Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 8, pp 795–800 | Cite as

First-Principles Study of the Influence of Zirconium on the Diffusion of Uranium Defects in Uranium Dioxide

  • Huan Wang
  • Yu Zou
  • Zhong Zhang
  • Kai-Yuan Wang
  • Huan An
  • Chang-Yong Zhan
  • Jun WangEmail author
  • Jian-Chun WuEmail author
Article
  • 22 Downloads

Abstract

The migration properties of uranium vacancies and interstitials in zirconium-doped uranium dioxide are studied by using density functional theory (DFT) and the climbing-image nudge elastic band (CI-NEB) method. The strong correlations among uranium 5f electrons were described by using a spherically averaged Hubbard parameter. In the model, the zirconium atoms are introduced by replacing the uranium atoms at the nearest and the next nearest neighbor sites along the diffusion path of uranium defects. The doping with zirconium obviously reduces the migration barriers for defects in uranium dioxide. The effect of doping with zirconium on the diffusion of uranium defects decreases with increasing distance between the zirconium dopant and the uranium defects. Further, we investigated the lattice distortion and the electron transfer associated with the migration of uranium defects, and we analyzed the physical origin of the reduction in the migration barriers caused by zirconium doping.

Keywords

Uranium dioxide Defect Zirconium Diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. V. Rondinella and T. Wiss, Mater. Today 13, 24 (2010).CrossRefGoogle Scholar
  2. [2]
    C. T. Yang and X. Y. Zhang, Mater. Sci. Eng. A 372, 287 (2004).CrossRefGoogle Scholar
  3. [3]
    J. H. Lan et al., J. Appl. Phys. 113, 183514 (2013).ADSCrossRefGoogle Scholar
  4. [4]
    P. Piluso, G. Trillon and C. J. Journeau, Nucl. Mater. 344, 259 (2005).ADSCrossRefGoogle Scholar
  5. [5]
    N. K. Kulkarni et al., J. Nucl. Mater. 384, 81 (2009).ADSCrossRefGoogle Scholar
  6. [6]
    W. A. Lambertson and M. H. Muller, J. Am. Ceram. Soc. 36, 365 (1953).CrossRefGoogle Scholar
  7. [7]
    B. Dorado et al., Phys. Rev. B 86, 035110 (2012).ADSCrossRefGoogle Scholar
  8. [8]
    J. Belle, J. Nucl. Mater. 30, 3 (1968).ADSCrossRefGoogle Scholar
  9. [9]
    H. Matzke, J. Nucl. Mater. 30, 26 (1969).ADSCrossRefGoogle Scholar
  10. [10]
    A. C. S. Sabioni, W. B. Ferraz and F. Millot, J. Nucl. Mater 257, 180 (1998).ADSCrossRefGoogle Scholar
  11. [11]
    E. Vathonne et al., J. Phys.: Condens. Matter 26, 325501 (2014).Google Scholar
  12. [12]
    B. Dorado, B. Amadon, M. Freyss and M. Bertolus, Phys. Rev. B 79, 235125 (2009).ADSCrossRefGoogle Scholar
  13. [13]
    S. L. Dudarev, D. N. Manh and A. P. Sutton, Philos. Mag. B 75, 613 (1997).ADSCrossRefGoogle Scholar
  14. [14]
    T. Hamada, T. Ohno and S. Maekawa, J. Korean Phys. Soc. 62, 2155 (2013).ADSCrossRefGoogle Scholar
  15. [15]
    M. Iwasawa et al., Mater. Trans. 47, 3651 (2006).CrossRefGoogle Scholar
  16. [16]
    S. A. Barrett, A. J. Jacobson, B. C. Tofield and B. E. F. Fender, Acta Cryst. 38, 2775 (1982).CrossRefGoogle Scholar
  17. [17]
    D. A. Andersson et al., Phys. Rev. B 84, 054105 (2011).ADSCrossRefGoogle Scholar
  18. [18]
    A. Goyal et al., Phys. Rev. B 91, 094103 (2015).ADSCrossRefGoogle Scholar
  19. [19]
    R. W. Grimes and C. R. A. Catlow, Phil. Trans. R. Soc. Lond. A 335, 609 (2015).ADSGoogle Scholar
  20. [20]
    R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).ADSCrossRefGoogle Scholar
  21. [21]
    J. Hafner, J. Comput. Chem. 29, 2044 (2008).CrossRefGoogle Scholar
  22. [22]
    Y. Wang, J. Ma, J. P. Zhou, X. M. Chen and J. Z. Wang, J. Korean Phys. Soc. 68, 409 (2016).ADSCrossRefGoogle Scholar
  23. [23]
    A. I. Liechtenstein, V. I. Anisimov and J. Zaanen, Phys. Rev. B 52, R5467 (1995).ADSCrossRefGoogle Scholar
  24. [24]
    S. L. Dudarev et al., Phys. Status Solidi A 166, 429 (1998).ADSCrossRefGoogle Scholar
  25. [25]
    B. Dorado et al., Phys. Rev. B 83, 035126 (2011).ADSCrossRefGoogle Scholar
  26. [26]
    G. Henkelman, B. P. Uberuaga and H. Jónsson, J. Chem. Phys. 113, 9901 (2000).ADSCrossRefGoogle Scholar
  27. [27]
    S. B. Wilkins et al., Phys. Rev. B 73, 060406 (2006).ADSCrossRefGoogle Scholar
  28. [28]
    P. Burlet et al., J. Less-Common Met. 121, 121 (1986).CrossRefGoogle Scholar
  29. [29]
    G. Amoretti et al., Phys. Rev. B 40, 1856 (1989).ADSCrossRefGoogle Scholar
  30. [30]
    H. Jnsson, G. Mills and Jacobsen, Nudged Elastic Band Method for Finding Minimum Energy Paths of Transitions (World Scientific, Singapore, 1998), p. 385.Google Scholar
  31. [31]
    D. R. Lide, ed., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 2005), p. 9.Google Scholar
  32. [32]
    R. D. Shannon, Acta Cryst. 32, 751 (1976).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Huan Wang
    • 1
  • Yu Zou
    • 1
  • Zhong Zhang
    • 1
  • Kai-Yuan Wang
    • 1
  • Huan An
    • 1
  • Chang-Yong Zhan
    • 1
  • Jun Wang
    • 1
    Email author
  • Jian-Chun Wu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and TechnologySichuan UniversityChengduChina
  2. 2.School of Material Science and EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations