Journal of the Korean Physical Society

, Volume 74, Issue 1, pp 73–77 | Cite as

Structural and Electrical Effects of Y-doped Li0.33La0.56−xYxTiO3 Solid Electrolytes on All-Solid-State Lithium Ion Batteries

  • Seon-Jin Lee
  • Jin-Ju Bae
  • Jong-Tae SonEmail author


Li0.33La0.56TiO3 (LLTO) solid state electrolytes have been considered as candidates to substitute for organic liquid electrolytes in lithium batteries. LLTO consist of a mixture of cubic phases with Pm3m symmetry (α-LLTO) and with tetragonal P4/mmm symmetry (β-LLTO). The α-LLTO phase has a higher Li ion conductivity than the β-LLTO phase. However, α-LLTO is characterized by high lattice strain, which induces the formation of β-LLTO due to the different atomic sizes of Li+ (0.76 Å) and La3+ (1.03 Å). In this study, to reduce lattice stress, we prepared Y-doped Li0.33La0.56−xYxTiO3 (x = 0.02, 0.05, 0.1) by using the sol-gel method. Because the ionic radius of Y3+ is 0.90 Å, that is, larger than that of Li+ (0.76 Å) and smaller than that of La3+ (1.03 Å), Y3+ suppresses the lattice distortion that prevents the formation of α-LLTO. The structural, morphological, and electrical characteristics of pure and Y3+-doped LLTO were investigated. The results show that Li0.33La0.46Y0.1TiO3 exhibits a better bulk conductivity (σ = 9.51 × 10−4 S cm−1) at 25 °C due to the increasing volume fraction of the more conductive α-LLTO phase.


Solid electrolytes LLTO Y-doping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Knauth, Solid State Ion. 180, 911 (2009).CrossRefGoogle Scholar
  2. [2]
    J. W. Fergus, J. Power Sources 195, 939 (2010).ADSCrossRefGoogle Scholar
  3. [3]
    L. Wüllen, T. Echelmeyer, H. W. Meyer and D. Wilmer, Phys. Chem. Chem. Phys. 9, 3298 (2007).CrossRefGoogle Scholar
  4. [4]
    E. J. Cussen, J. Mater. Chem. 20, 5167 (2010).CrossRefGoogle Scholar
  5. [5]
    S. Narayanan, F. Ramezanipour and V. Thangadurai, J. Phys. Chem. C 116, 20154 (2012).CrossRefGoogle Scholar
  6. [6]
    V. Thangadurai and W. Weppner, J. Am. Ceram. Soc. 88, 411 (2005).CrossRefGoogle Scholar
  7. [7]
    R. Kanno and M. Murayama, J. Electrochem. Soc. 148, A742 (2001).CrossRefGoogle Scholar
  8. [8]
    A. D. Robertson, S. G. Martin, A. Coats and A. R.West, J. Mater. Chem. 5, 1405 (1995).CrossRefGoogle Scholar
  9. [9]
    A. Várez, F. G. Alvarado, E. Morán and M. A. A. Franco, J. Solid State Chem. 118, 78 (1995).ADSCrossRefGoogle Scholar
  10. [10]
    T. Teranishi, A. Kouchi, H. Hayashi and A. Kishimoto, Solid State Ion. 263, 33 (2014).CrossRefGoogle Scholar
  11. [11]
    Y. Harada, T. Ishigaki, H. Kawai and J. Kuwano, Solid State Ion. 108, 407 (1998).CrossRefGoogle Scholar
  12. [12]
    Y. Harada, Y. Hirakoso, H. Kawai and J. Kuwano, Solid State Ion. 121, 245 (1999).CrossRefGoogle Scholar
  13. [13]
    T. Teranishi, M. Yamamoto, H. Hayashi and A. Kishimoto, Solid State Ion. 243, 18 (2013).CrossRefGoogle Scholar
  14. [14]
    H. T. T. Le, D. T. Ngo, Y-J. Kim, C-N. Park and C. J. Park, Electrochimica Acta 248, 232 (2017).CrossRefGoogle Scholar
  15. [15]
    H. Zhang, S. Hao and J. Lin, Alloys Compd. 704, 109 (2017).CrossRefGoogle Scholar
  16. [16]
    A. Mei, X-L. Wang, J-L. Lan, Y-C. Feng, H-X. Geng, Y-H. Lin and C-W. Nan, Electrochimica Acta 55, 2958 (2010).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Nano-Polymer Science & EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations