Journal of the Korean Physical Society

, Volume 74, Issue 7, pp 701–706 | Cite as

Generalized Thermionic Emission for Arbitrary Dimension

  • Heetae Kim
  • Jong-Kwon LeeEmail author


Thermionic emission for quasi-free electron metals is investigated in arbitrary dimension. The thermionic emission for a constant temperature and work function is calculated for one, two and three dimensions. The generalized current density of the thermionic emission is calculated for arbitrary dimension. The current density is shown as a function of temperature for different work functions. The current density is also shown as a function of dimension for different temperatures and work functions.


Thermionic emission Electron emission Electron source Arbitrary dimension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Rare Isotope Science Project of the Institute for Basic Science funded by the Ministry of Science, ICT and Future Planning (MSIP) and by the National Research Foundation (NRF) of the Republic of Korea under contract 2013M7A1A1075764. This research was also supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education under contract 2017R1D1A1B03034672.


  1. [1]
    C. Hernandez-Garcia, P. G. O Shea and M. L. Stutzman, Phys. Today 61, 44 (2008).CrossRefGoogle Scholar
  2. [2]
    P.T. Landsberg and A. De Vos, J. Phys. A: Math. Gen. 22, 1073 (1989).ADSCrossRefGoogle Scholar
  3. [3]
    S. J. Yu, S. J. Youn and H. Kim, Physica B 405, 638 (2010).ADSCrossRefGoogle Scholar
  4. [4]
    H. Kim, S. J. Youn and S. J. Yu, J. Korean Phys. Soc. 56, 554 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    H. Kim, S. C. Lim and Y. H. Lee, Phys. Letts. A 375, 2661 (2011).ADSCrossRefGoogle Scholar
  6. [6]
    X. Bao, D. J. Webb and D. A. Jackson, Electron. Lett. 29, 976 (1993).ADSCrossRefGoogle Scholar
  7. [7]
    M. Schulz and L. Caldwell, Infrared Phys. Technol. 36, 763 (1995).ADSCrossRefGoogle Scholar
  8. [8]
    J. K. Ji, J. R. Yoon and K. Cho, Opt. Eng. 39, 936 (2000).ADSCrossRefGoogle Scholar
  9. [9]
    T. Orzanowski and H. Madura, Opto-Electron. Rev. 18, 91 (2010).ADSCrossRefGoogle Scholar
  10. [10]
    R. H. Vollmerhausen, Opt. Eng. 48, 0764019–1(2009).CrossRefGoogle Scholar
  11. [11]
    H. Kim, M. S. Han, D. Perello and M. Yun, Infrared Phys. Techn. 60, 7 (2013).ADSCrossRefGoogle Scholar
  12. [12]
    H. Kim, C. S. Park and M. S. Han, Opt. Commun. 325, 68 (2014).ADSCrossRefGoogle Scholar
  13. [13]
    H. Kim et al., Infrared Phys. Techn. 67, 49 (2014).ADSCrossRefGoogle Scholar
  14. [14]
    A. Coniglio, L. De Arcangelis and H. J. Herrmann, Physica A 157, 21 (1989).ADSCrossRefGoogle Scholar
  15. [15]
    J. Theiler, J. Opt. Soc. Am. A 7, 1055 (1990).ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    S. Draves et al., Intern. J. of Bifurc. Chaos 18, 1243 (2008).ADSCrossRefGoogle Scholar
  17. [17]
    S. T. Nam, J. Korean Phys. Soc. 44, 464 (2004).Google Scholar
  18. [18]
    H. Kim et al., Infrared Phys. Techn. 67, 600 (2014).ADSCrossRefGoogle Scholar
  19. [19]
    R. Gomer, Field Emission and Field Ionization (Harvard University Press, Cambridge, 1961).Google Scholar
  20. [20]
    H. Kim and S. J. Yu, J. Inform. Display 10, 158 (2009).CrossRefGoogle Scholar
  21. [21]
    X. Wei, Q. Chen and L. Peng, AIP Adv. 3, 042130 (2013).ADSCrossRefGoogle Scholar
  22. [22]
    Y. S. Ang, H. Y. Yang and L. K. Ang, Phys. Rev. Lett. 121, 056802 (2018).ADSCrossRefGoogle Scholar
  23. [23]
    A. Tavkhelidze, V. Svanidze and I. Noselidze, J. Vac. Sci. Technol. B 25, 1270 (2007).CrossRefGoogle Scholar
  24. [24]
    A. N. Tavkhelidze, J. Appl. Phys. 108, 044313 (2010).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Rare Isotope Science ProjectInstitute for Basic ScienceDaejeonKorea
  2. 2.Department of Nanostructure TechnologyNational Nanofab CenterDaejeonKorea

Personalised recommendations