Journal of the Korean Physical Society

, Volume 74, Issue 7, pp 679–683 | Cite as

The Effects of Boron Passivation and Re-Oxidation on the Properties of the 4H-SiC/SiO2 Interface

  • Chungbu Jeong
  • Kwangsoo KimEmail author


We investigated the effect of boron passivation and re-oxidation on the properties of the silicon carbide/silicon dioxide interface. Metal-oxide-semiconductor capacitors were fabricated on 4H-silicon carbide substrates and the capacitance-voltage properties were measured. The high-low capacitance-voltage method was used to obtain the interface trap density from the capacitance-voltage curve. Boron passivation is known to be effective in reducing the size of carbon clusters at the silicon-carbide/silicon-dioxide interface. Also re-oxidation is known to be effective in improving the quality of the oxide and reducing the dangling bond set of the silicon-carbide/silicon-dioxide interface. The effect of each boron passivation and re-oxidation method on the silicon carbide/silicon dioxide interface was analyzed by observing the interface trap density obtained from the capacitance-voltage curves. We found that the interface trap density could be significantly improved; the best sample exhibited an interface trap density approximately 51% lower than that of the sample subjected to conventional oxidation via wet oxidation, boron passivation and wet re-oxidation. The interface of each sample was investigated with X-ray photoelectron spectroscopy, based on which we inferred that boron-passivation reduced the size of residue carbon clusters located at the silicon-carbide/silicon-dioxide interface.


4H-SiC MOS capacitor POA Interface trap density XPS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the KIAT (Korea Institute for the Advancement of Technology), supervised by the MOTIE (Ministry of Trade, Industry and Energy)(N0001594) and by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program (IITP-2018-0-01421) supervised by the IITP (Institute for Information & communications Technology Promotion).


  1. [1]
    J. B. Casady and R. W. Johnson, Solid-State Elec. 39, 1409 (1996).ADSCrossRefGoogle Scholar
  2. [2]
    J. A. Cooper, Jr., Phys. Status Solidi A 162, 305 (1997).ADSCrossRefGoogle Scholar
  3. [3]
    B. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer, NY, 2008).CrossRefGoogle Scholar
  4. [4]
    H. Morkoc et al., J.Appl. Phys. 76, 1363 (1994).ADSCrossRefGoogle Scholar
  5. [5]
    K. McDonald et al., J.Appl. Phys. 93, 2719 (2003).ADSCrossRefGoogle Scholar
  6. [6]
    L. Huang et al., Appl. Phys. Lett. 100, 263503 (2012).ADSCrossRefGoogle Scholar
  7. [7]
    K. Ueno, R. Asai and T. Tsuji, IEEE Electron Device Lett. 19, 244 (1998).ADSCrossRefGoogle Scholar
  8. [8]
    S. Dimitrijev, H-F. Li, J. B. Harrison and D. Sweatman, IEEE Electron Device Lett. 18, 175 (1997).ADSCrossRefGoogle Scholar
  9. [9]
    M. Di Ventura and S. T. Pantelides, Phys. Rev. Lett. 83, 1624 (1999).ADSCrossRefGoogle Scholar
  10. [10]
    V. V. Afanasev, M. Bassler, G. Pensl and M. Schulz, Phys. Stat. Sol. A Appl. Res. 162, 321 (1997).ADSCrossRefGoogle Scholar
  11. [11]
    G. Duscher, Bull. Am. Phys. Soc. 45, 340 (2000).Google Scholar
  12. [12]
    K. C. Chang, N. T. Nuhfer, L. M. Porter and Q. Wahab, Appl. Phys. Lett. 77, 2186 (2000).ADSCrossRefGoogle Scholar
  13. [13]
    R. C. De Meo, T. K. Wang, T. P. Chow, D. M. Brown and L.G. Matus, J. Electrochem.Soc. 141, 150 (1994).CrossRefGoogle Scholar
  14. [14]
    G. G. Jernigan, R. E. Stahlbus and N. S. Saks, Appl. Phys. Lett. 77, 1437 (2000).ADSCrossRefGoogle Scholar
  15. [15]
    M. Losurdo, M. M. Giangregorio and G. Bruno, Appl. Phys. Lett. 85, 4034 (2004).ADSCrossRefGoogle Scholar
  16. [16]
    R. H. Kikuchi and K. Kita, Appl. Phys. Lett. 105, 032106 (2014).ADSCrossRefGoogle Scholar
  17. [17]
    G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald and M. D. Ventra, Appl. Phys. Lett. 76, 1713 (2000).ADSCrossRefGoogle Scholar
  18. [18]
    V. V. Afanasev, A. Stesmans, F. Ciobanu, G. Pensl, K. Y. Cheong and S. Dimitrijev, Appl. Phys. Lett. 82, 568 (2003).ADSCrossRefGoogle Scholar
  19. [19]
    P. T. Lai, J. P. Xu and C. L. Chan, IEEE Electron Device Lett. 23, 410 (2002).ADSCrossRefGoogle Scholar
  20. [20]
    K. Y. Cheong, W. Bahng and N. K. Kim, Appl. Phys. Lett. 90, 012120 (2007).ADSCrossRefGoogle Scholar
  21. [21]
    D. Okamoto, H. Yano, K. Kirata, T. Hatayama and T. Fuyuki, IEEE Electron Device Lett. 31, 710 (2010).ADSCrossRefGoogle Scholar
  22. [22]
    G. Liu, A. C. Ahyi, Y. Xu, T. Isaacs-Smith, Y. K. Sharma, J. R. Williams, L. C. Feldman and S. Dhar, IEEE Electron Device Lett. 34, 181 (2013).ADSCrossRefGoogle Scholar
  23. [23]
    D. Okamoto, M. Sometani, S. Harada, R. Kosugi, Y. Yonezawa and H. Yano, IEEE Electron Device Lett. 35, 1176 (2014).ADSCrossRefGoogle Scholar
  24. [24]
    D. Okamoto, M. Sometani, S. Harada et al., Appl. Phys. A 123, 133 (2017).ADSCrossRefGoogle Scholar
  25. [25]
    J. J. Shenoy, G. L. Chindalore, M. R. Melloch et al., JEM 24, 303 (1995).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Electronic EngineeringSogang UniversitySeoulKorea

Personalised recommendations