Journal of the Korean Physical Society

, Volume 74, Issue 7, pp 649–659 | Cite as

Effect of Dipole Orientation on the Angular Emission Characteristic of a Three-Dimensional Top-Emitting Organic Light-Emitting Diode with Square Pixel Boundary

  • Kyungnam Kang
  • Jungho KimEmail author


We numerically investigate the effect of the dipole orientation on the light emission characteristics of a three-dimensional top-emitting organic light-emitting diode (TOLED) with square pixel boundary, based on the finite element method. The spatial profiles of the optical power flows and the output angular emission characteristics are calculated in various horizontal positions of a single dipole with the x-, y-and z-directed dipole orientations. The total angular emission characteristics of the TOLED are obtained by summing the individual angular emission characteristics of 100 dipole emitters, which are assumed to be uniformly distributed within the square pixel boundary. The angular emission pattern of the y-directed dipole emitters exhibits an approximately 10% higher intensity with a narrower linewidth than that of the x-directed dipole emitters. This difference in the angular emission patterns of the x- and y-directed dipole orientations can be attributed to the dipole orientation dependent internal radiation pattern, which has different spectral power densities as a function of the internal emission angle and light polarization. In addition, the average angular emission characteristics of the randomly oriented dipole emitter are calculated by averaging over those of the x- and y- directed dipole emitters.


Organic light-emitting diodes (OLEDs) Numerical calculation Finite element method Angular emission pattern 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Basic Science Research Program (2018R1D1A1B07047249) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education. KK acknowledges the support by the BK21 program of School of Electrical and Electronic Engineering of Yonsei University.


  1. [1]
    S. Hofmann et al., Appl. Phys. Lett. 97, 253308 (2010).ADSCrossRefGoogle Scholar
  2. [2]
    S. Hofmann, M. Thomschke, B. Lüssem and K. Leo, Opt. Express 19, A1250 (2011).ADSCrossRefGoogle Scholar
  3. [3]
    H. Cho, C. Yun and S. Yoo, Opt. Express 18, 3404 (2010).ADSCrossRefGoogle Scholar
  4. [4]
    L. H. Smith, J. E. Wasey and W. L. Barnes, Appl. Phys. Lett. 84, 2986 (2004).ADSCrossRefGoogle Scholar
  5. [5]
    R. Meerheim, M. Furno, S. Hofmann, B. Lüssem and K. Leo, Appl. Phys. Lett. 97, 253305 (2010).ADSCrossRefGoogle Scholar
  6. [6]
    X. W. Chen, W. C. H. Choy, S. He and P. Chui, J. Appl. Phys. 101, 113107 (2007).ADSCrossRefGoogle Scholar
  7. [7]
    M. J. Park et al., Opt. Express 22, 19919 (2014).ADSCrossRefGoogle Scholar
  8. [8]
    S. An et al., SID Symposium Digest of Technical Papers 41, 706 (2012).CrossRefGoogle Scholar
  9. [9]
    J. Baumgarten et al., J. Inf. Disp. 13, 67 (2012).CrossRefGoogle Scholar
  10. [10]
    K. Kang, J. Yoon, J. Kim, H. Lee and B. Yang, Opt. Express 23, A709 (2015).ADSCrossRefGoogle Scholar
  11. [11]
    W.-Y. Park, H.-W. Cheong, C. Lee and K. Whang, Opt. Express 24, 24018 (2018).ADSCrossRefGoogle Scholar
  12. [12]
    A. Chutinan, K. Ishihara, T. Asano, M. Fujita and S. Noda, Org.Electron. 6, 3 (2005).CrossRefGoogle Scholar
  13. [13]
    S. S. Jeong and J.-H. Ko, J. Opt. Soc. Korea 17, 269 (2013).CrossRefGoogle Scholar
  14. [14]
    J.-W. Kim et al., Opt. Express 22, 498 (2014).ADSCrossRefGoogle Scholar
  15. [15]
    C.-Y. Chen et al., Opt. Express 24, A810 (2016).CrossRefGoogle Scholar
  16. [16]
    H. Benisty, R. Stanley and M. Mayer, J. Opt. Soc. Am. A 15, 1192 (1998).ADSCrossRefGoogle Scholar
  17. [17]
    M. Flämmich et al., Org.Electron. 11, 1039 (2010).CrossRefGoogle Scholar
  18. [18]
    S.-Y. Kim et al., Adv. Funct. Mater. 23, 3896 (2013).CrossRefGoogle Scholar
  19. [19]
    T. D. Schmidt et al., Phys. Rev. Appl. 8, 037001 (2017).ADSCrossRefGoogle Scholar
  20. [20]
    J. Kim, K. Kim and J. Kim, Appl. Opt. 57, 8394 (2018).ADSCrossRefGoogle Scholar
  21. [21]
    COMSOL Multiphysics version 5.3a (Comsol Inc. 2017).Google Scholar
  22. [22]
    K. Kang, Y. Lee, J. Kim, H. Lee and B. Yang, IEEE Photon. J. 8, 1600519 (2016).Google Scholar
  23. [23]
    K. A. Neyts, J. Opt. Soc. Am. A 15, 962 (1998).ADSCrossRefGoogle Scholar
  24. [24]
    M. Furno, R. Meerheim, S. Hofmann, B. Lüssem and K. Leo, Phys. Rev. B 85, 115205 (2012).ADSCrossRefGoogle Scholar
  25. [25]
    SETFOS version 4.5 (A. G. Fluxim, 2017).Google Scholar
  26. [26]
    K. Kang, K.-Y. Kim and J. Kim, Opt. Express 26, A955 (2018).CrossRefGoogle Scholar
  27. [27]
    B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, New Jersey, 2007).Google Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.School of Electrical and Electronic EngineeringYonsei UniversitySeoulKorea
  2. 2.Department of Information DisplayKyung Hee UniversitySeoulKorea

Personalised recommendations