Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 6, pp 530–541 | Cite as

Vector Field Platform for Visualizing Electric and Magnetic Fields in Matter using Mathematica

  • Yong-Dae Choi
  • Hee-Joong YunEmail author
Article
  • 28 Downloads

Abstract

Vector fields can be used to represent physical quantities in various area of physics, including gravitational field and electromagnetic field with vector differential operators. As this involves abstract, three-dimensional fields that are sometimes very difficult to visualize, electromagnetism in matter can be rather conceptual. A visual representation of abstract vector fields in matter is invaluable to students or researchers working in this field and helps teachers to teach electromagnetism to physics or engineering students. We visualized the most fundamental concepts of electromagnetic vector fields: \(\overrightarrow{E}=-\overrightarrow\triangledown\varphi, \overrightarrow{D}=\epsilon\overrightarrow{E}, \overrightarrow{B}=\overrightarrow\triangledown\times\overrightarrow{A}, \overrightarrow{H}=-\overrightarrow\triangledown\phi^*\), and \(\overrightarrow{B}=\mu\overrightarrow{H}\), all of which were calculated using the vector differential operators in Mathematica. This visualization based on vector calculations can be used as a starting platform for exploring electromagnetic vector fields.

Keywords

Electromagnetic vector field Mathematica Vector differential operators Mathematica simulation Vector field visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. R. Reitz, F. J. Milford and R. W. Christy, Foundation of Electromagnetic Theory (Addison-Wesley, Reading, 1992), pp. 63, 116, 209, 225, and 242, Chaps. 4 and 9.Google Scholar
  2. [2]
    D. J. Griffiths, Introduction to electrodynamics (Prentice Hall, Eaglewood Cliffs, 1989), pp. 118, 166, 176, and 236, Chaps. 2 and 4.Google Scholar
  3. [3]
    D. K. Cheng, Fundamentals of Engineering Electromagnetics (Addison-Wesley, San Francisco, 1993), Chap. 5, Appendix B.Google Scholar
  4. [4]
    M. N. O. Sadiku, Elements of electromagnetcs (Oxford University Press, New York, 2001), p. 173, Chap. 5Google Scholar
  5. [5]
    G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Holt,Rinehart and Winston New York, 1975), pp. 6 and 170, Chaps. 1 and 6.Google Scholar
  6. [6]
    J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York,1975), pp. 90, 193, and 196, Chap. 5, Appendix.zbMATHGoogle Scholar
  7. [7]
    G. B. Arfken and H. J. Weber, Mathematical Methods for Physics 4th ed. (Academic Press, San Diego, 1995), Chap. 1, pp. 510 and 748.Google Scholar
  8. [8]
    O. Ozgun and L. Sevgi, IEEE Antennas and Propagation Magazine 57, 113 (2015).ADSCrossRefGoogle Scholar
  9. [9]
    Hugo G. Espiosa and David V. Thiel, IEEE Antennas and Propagation Magazine 17, 140 (2017).ADSCrossRefGoogle Scholar
  10. [10]
  11. [11]
    R. L. Zimmerman and F. I. Olness, Mathematica for Physics, 2nd ed. (Addison-Wesley, San Francisco, 2002), Chap 8.Google Scholar
  12. [12]
    P. T. Tamm, A Physicist’s Guide to Mathematica (Academic Press, San Diego, 1997), Chaps. 4 and 5.Google Scholar
  13. [13]
    Wolfram Research, The Mathematica 11.0 Documenter Center (Wolfram Media, Champaign, 2017).Google Scholar
  14. [14]
    Wolfram Research, The Mathematica 11.0 Standard Add-on Packages (Wolfram Media, Champaign, 2017).Google Scholar
  15. [15]
    Y. Shibuya, Dielectric Sphere in a Uniform Electric Field, https://doi.org/demonstrations.wolfram.com/DielectricSphereInAUniformElectricField (2018).Google Scholar
  16. [16]
    G. Kim and B. Lee, J. Electromag. Engin. Sci. 16, 67 (2016).CrossRefGoogle Scholar
  17. [17]
    V. Veselago, L. Braginsky, V. Shklover and C. Hafner, J. Comput. Theo. Nanosci. 3, 1 (2006).Google Scholar
  18. [18]
    H. J. Yun, New Physics: Sae Mulli 50, 134 (2005).Google Scholar
  19. [19]
    Y. D. Choi and H. J. Yun, J. Korean Vacuum Soc. 21, 69 (2012).CrossRefGoogle Scholar
  20. [20]
    Basdevant Nathalie, Haduong Tap and Borgis Daniel, Molecular Phys. 102, 783 (2004).Google Scholar
  21. [21]
    N. A. Pertseb and H. Kohlstedt, con-mat. 0603762 (2006).Google Scholar
  22. [22]
    Q. Zhang and I. Ponomareva, New J. Phys. 15, 043022 (2013).ADSCrossRefGoogle Scholar
  23. [23]
  24. [24]
  25. [25]
    Y. D. Choi and H. J. Yun, J. Korean Phys. Soc. 67, 792 (2015).ADSCrossRefGoogle Scholar
  26. [26]
    T. W. Kim and H. J. Yun, J. Korean Phys. Soc. 69, 697 (2016).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Microbial & NanomaterialsMokwon UniversityDaejeonKorea
  2. 2.College of Techno-SciencesMokwon UniversityDaejeonKorea

Personalised recommendations