Journal of the Korean Physical Society

, Volume 74, Issue 6, pp 530–541

# Vector Field Platform for Visualizing Electric and Magnetic Fields in Matter using Mathematica

• Yong-Dae Choi
• Hee-Joong Yun
Article

## Abstract

Vector fields can be used to represent physical quantities in various area of physics, including gravitational field and electromagnetic field with vector differential operators. As this involves abstract, three-dimensional fields that are sometimes very difficult to visualize, electromagnetism in matter can be rather conceptual. A visual representation of abstract vector fields in matter is invaluable to students or researchers working in this field and helps teachers to teach electromagnetism to physics or engineering students. We visualized the most fundamental concepts of electromagnetic vector fields: $$\overrightarrow{E}=-\overrightarrow\triangledown\varphi, \overrightarrow{D}=\epsilon\overrightarrow{E}, \overrightarrow{B}=\overrightarrow\triangledown\times\overrightarrow{A}, \overrightarrow{H}=-\overrightarrow\triangledown\phi^*$$, and $$\overrightarrow{B}=\mu\overrightarrow{H}$$, all of which were calculated using the vector differential operators in Mathematica. This visualization based on vector calculations can be used as a starting platform for exploring electromagnetic vector fields.

## Keywords

Electromagnetic vector field Mathematica Vector differential operators Mathematica simulation Vector field visualization

## References

1. [1]
J. R. Reitz, F. J. Milford and R. W. Christy, Foundation of Electromagnetic Theory (Addison-Wesley, Reading, 1992), pp. 63, 116, 209, 225, and 242, Chaps. 4 and 9.Google Scholar
2. [2]
D. J. Griffiths, Introduction to electrodynamics (Prentice Hall, Eaglewood Cliffs, 1989), pp. 118, 166, 176, and 236, Chaps. 2 and 4.Google Scholar
3. [3]
D. K. Cheng, Fundamentals of Engineering Electromagnetics (Addison-Wesley, San Francisco, 1993), Chap. 5, Appendix B.Google Scholar
4. [4]
M. N. O. Sadiku, Elements of electromagnetcs (Oxford University Press, New York, 2001), p. 173, Chap. 5Google Scholar
5. [5]
G. R. Fowles, Introduction to Modern Optics, 2nd ed. (Holt,Rinehart and Winston New York, 1975), pp. 6 and 170, Chaps. 1 and 6.Google Scholar
6. [6]
J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York,1975), pp. 90, 193, and 196, Chap. 5, Appendix.
7. [7]
G. B. Arfken and H. J. Weber, Mathematical Methods for Physics 4th ed. (Academic Press, San Diego, 1995), Chap. 1, pp. 510 and 748.Google Scholar
8. [8]
O. Ozgun and L. Sevgi, IEEE Antennas and Propagation Magazine 57, 113 (2015).
9. [9]
Hugo G. Espiosa and David V. Thiel, IEEE Antennas and Propagation Magazine 17, 140 (2017).
10. [10]
11. [11]
R. L. Zimmerman and F. I. Olness, Mathematica for Physics, 2nd ed. (Addison-Wesley, San Francisco, 2002), Chap 8.Google Scholar
12. [12]
P. T. Tamm, A Physicist’s Guide to Mathematica (Academic Press, San Diego, 1997), Chaps. 4 and 5.Google Scholar
13. [13]
Wolfram Research, The Mathematica 11.0 Documenter Center (Wolfram Media, Champaign, 2017).Google Scholar
14. [14]
Wolfram Research, The Mathematica 11.0 Standard Add-on Packages (Wolfram Media, Champaign, 2017).Google Scholar
15. [15]
Y. Shibuya, Dielectric Sphere in a Uniform Electric Field, https://doi.org/demonstrations.wolfram.com/DielectricSphereInAUniformElectricField (2018).Google Scholar
16. [16]
G. Kim and B. Lee, J. Electromag. Engin. Sci. 16, 67 (2016).
17. [17]
V. Veselago, L. Braginsky, V. Shklover and C. Hafner, J. Comput. Theo. Nanosci. 3, 1 (2006).Google Scholar
18. [18]
H. J. Yun, New Physics: Sae Mulli 50, 134 (2005).Google Scholar
19. [19]
Y. D. Choi and H. J. Yun, J. Korean Vacuum Soc. 21, 69 (2012).
20. [20]
Basdevant Nathalie, Haduong Tap and Borgis Daniel, Molecular Phys. 102, 783 (2004).Google Scholar
21. [21]
N. A. Pertseb and H. Kohlstedt, con-mat. 0603762 (2006).Google Scholar
22. [22]
Q. Zhang and I. Ponomareva, New J. Phys. 15, 043022 (2013).
23. [23]
24. [24]
25. [25]
Y. D. Choi and H. J. Yun, J. Korean Phys. Soc. 67, 792 (2015).
26. [26]
T. W. Kim and H. J. Yun, J. Korean Phys. Soc. 69, 697 (2016).