Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 5, pp 527–529 | Cite as

Charge Dynamics Study of the Percolation Threshold in a Polymer-Fullerene Composite System

  • Kyu Hyun Mo
  • Dong Min Choi
  • Cheol Eui LeeEmail author
Brief Reports
  • 4 Downloads

Abstract

A fullerene percolation threshold has been identified in the current density-voltage (J-V) characteristics of a 5-(2’-ethyl-hexyloxy)-p-phenylene-vinylene (MEH-PPV) conjugated polymer and fullerene (C60) composite system. Charge dynamics associated with the percolation threshold was studied in this work by means of time-of-flight (TOF) measurements of the charge carrier mobilities. The hole mobility showed little change up to a fullerene concentration of 1 wt.%. On the other hand, the electron mobility increased with increasing fullerene concentration and exhibited a critical behavior with a maximum at a percolation threshold of 0.8 wt.%, at which a minimum in the energetic disorder took place.

Keywords

Charge dynamics Fullerene-doped MEH-PPV conjugated polymers Percolation threshold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature 347, 539 (1990).ADSCrossRefGoogle Scholar
  2. [2]
    P. K. H. Ho, J. S. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Cacialli and R. H. Friend, Nature 404, 481 (2000).ADSCrossRefGoogle Scholar
  3. [3]
    C. H. Lee, K. W. Lee and C. E. Lee, Curr. Appl. Phys. 3, 477 (2003).ADSCrossRefGoogle Scholar
  4. [4]
    H. C. F. Martens, J. N. Huiberts and P. W. M. Blom, Appl. Phys. Lett. 77, 1852 (2000).ADSCrossRefGoogle Scholar
  5. [5]
    B. K. Crone, I. H. Campbell, P. S. Davids and D. L. Smith, Appl. Phys. Lett. 73, 162 (1998).CrossRefGoogle Scholar
  6. [6]
    X-Z. Bo, C. Y. Lee, M. S. Strano, M. Goldfinger, C. Nuckolls and G. B. Blanchet, Appl. Phys. Lett. 86, 182102 (2005).ADSCrossRefGoogle Scholar
  7. [7]
    E. Mulazzi, R. Perego, H. Aarab, L. Mihut, S. Lefrant, E. Faulques and J. Wery, Phys. Rev. B 70, 155206 (2004).ADSCrossRefGoogle Scholar
  8. [8]
    E. Kymakis and G. A. J. Amaratunga, Appl. Phys. Lett. 80, 112 (2002).ADSCrossRefGoogle Scholar
  9. [9]
    J. N. Coleman, S. Curran, A. B. Dalton, A. P. Davey, B. McCarthy, W. Blau and R. C. Barklie, Phys. Rev. B 58, R7492 (1998).ADSCrossRefGoogle Scholar
  10. [10]
    K. W. Lee, S. P. Lee, H. Choi, K. H. Mo, J. W. Jang, H. Kweon and C. E. Lee, Appl. Phys. Lett. 91, 023110 (2007).ADSCrossRefGoogle Scholar
  11. [11]
    T. J. Savenije, J. E. Kroeze, M. M. Wienk, J. M. Kroon and J. M. Warman, Phys. Rev. B 69, 155205 (2004).ADSCrossRefGoogle Scholar
  12. [12]
    H. C. F. Martens, H. C. F. Martens and H. F. M. Schoo, Phys. Rev. B 61, 7489 (2000).ADSCrossRefGoogle Scholar
  13. [13]
    E. J. W. List, C. H. Kim, J. Shinar, A. Pogantsch, G. Leising and W. Graupner, Appl. Phys. Lett. 76, 2083 (2000).ADSCrossRefGoogle Scholar
  14. [14]
    P. G. Collins, K. Bradley, M. Ishigami and A. Zettl, Science 287, 1801 (2000).ADSCrossRefGoogle Scholar
  15. [15]
    S. P. Lee, H. Choi, K. W. Lee, K. H. Mo, J. W. Jang, E. Lee, I-M. Kim and C. E. Lee, J. Korean Phys. Soc. 48, 146 (2006).Google Scholar
  16. [16]
    I. H. Campbell, D. L. Smith, C. J. Neef and J. P. Ferraris, Appl. Phys. Lett. 74, 2809 (1999).ADSCrossRefGoogle Scholar
  17. [17]
    G. G. Malliaras, J. R. Salem, P. J. Brock and J. C. Scott, Phys. Rev. B 58, R13411 (1998).ADSCrossRefGoogle Scholar
  18. [18]
    D. H. Dunlap, P. E. Parris and V. M. Kenkre, Phys. Rev. Lett. 77, 542 (1996).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsKorea UniversitySeoulKorea

Personalised recommendations