Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 5, pp 512–521 | Cite as

Essentiality Landscape of Metabolic Networks

  • P. Kim
  • B. KahngEmail author
  • K. Han
  • D. -S. LeeEmail author
Article
  • 22 Downloads

Abstract

Local perturbations of individual metabolic reactions may result in different levels of lethality, depending on their roles in metabolism and the size of subsequent cascades induced by their failure. Moreover, essentiality of individual metabolic reactions may show large variations within and across species. Here, we quantify essentialities in hundreds of species by computing the growth rate after removal of individual and pairs of reactions by using a flux balance analysis. We find that about 10% of reactions are essential, i.e., growth stops without them, and most of the remaining reactions are redundant in the metabolic network of each species. This large-scale and cross-species study allows us to determine ad hoc ages of each reaction and species. We find that when a reaction is older and contained in younger species, the reaction is more likely to be essential. Such correlations of essentiality with the ages of reactions and species may be attributable to the evolution of cellular metabolism, in which alternative pathways are recruited to ensure the stability of important reactions to various degrees across species.

Keywords

Metabolic network Flux balance analysis (FBA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Stelling, S. Klamt, K. Bettenbrock, S. Schuster and E. D. Gilles, Nature 420, 190 (2002).ADSCrossRefGoogle Scholar
  2. [2]
    S. Singh et al., Phys. Rev. E 87, 052708 (2013).ADSCrossRefGoogle Scholar
  3. [3]
    T. Shlomi, O. Berkman and E. Ruppin, Proc. Nat. Acad. Sci. USA 102, 7695 (2005).ADSCrossRefGoogle Scholar
  4. [4]
    R. Harrison, B. Papp, C. Pál, S. G. Oliver and D. Delneri, Proc. Nat. Acad. Sci. USA 104, 2307 (2007).ADSCrossRefGoogle Scholar
  5. [5]
    E. Almaas, Z. N. Oltvai and A-L. Barabási, PLoS Comput. Biol. 1, e68 (2005).ADSCrossRefGoogle Scholar
  6. [6]
    A. Wagner, BioEssays 27, 176 (2005).CrossRefGoogle Scholar
  7. [7]
    O. Güell, F. Sagués and M. Á. Serrano, PLoS Comput. Biol. 10, 1 (2014).CrossRefGoogle Scholar
  8. [8]
    P. F. Suthers, A. Zomorrodi and C. D. Maranas, Mol. Sys. Biol. 5, 301 (2009).Google Scholar
  9. [9]
    A. Barve, J. F. M. Rodrigues and A. Wagner, Proc. Nat. Acad. Sci. USA 109, E1121 (2012).CrossRefGoogle Scholar
  10. [10]
    A. R. Joyce et al., J. Bacteriol. 188, 8259 (2006).CrossRefGoogle Scholar
  11. [11]
    C. Pál et al., Nature 440, 667 (2006).ADSCrossRefGoogle Scholar
  12. [12]
    D. Deutscher, I. Meilijson, M. Kupiec and E. Ruppin, Nat. Genet. 38, 993 (2006).CrossRefGoogle Scholar
  13. [13]
    B. Papp, C. Pál and L. D. Hurst, Nature 429, 661 (2004).ADSCrossRefGoogle Scholar
  14. [14]
    K. Nakahigashi et al., Mol. Sys. Biol. 5, 306 (2009).Google Scholar
  15. [15]
    J. F. M. Rodrigues and A. Wagner, PLoS Comput. Biol. 5, e1000613 (2009).CrossRefGoogle Scholar
  16. [16]
    R. L. Chang et al., Science 340, 1220 (2013).ADSCrossRefGoogle Scholar
  17. [17]
    S. Light and P. Kraulis, BMC Bioinformatics 5, 15 (2004).CrossRefGoogle Scholar
  18. [18]
    T. Yamada and P. Bork, Nat. Rev. Mol. Cell Biol. 10, 791 (2009).CrossRefGoogle Scholar
  19. [19]
    P. Kim, D-S. Lee and B. Kahng, Sci. Rep. 5, 15567 (2015).ADSCrossRefGoogle Scholar
  20. [20]
    B. Ø. Palsson, Systems Biology: Properties of Reconstructed Networks (Cambridge University Press, Cambridge, 2006).Google Scholar
  21. [21]
    D. Segré, D. Vitkup and G. M. Church, Proc. Nat. Acad. Sci. USA 99, 15112 (2002).ADSCrossRefGoogle Scholar
  22. [22]
    A. Bordbar, J. M. Monk, Z. A. King and B. Ø. Palsson, Nat. Rev. Genet. 15, 107 (2014).CrossRefGoogle Scholar
  23. [23]
    P. D. Karp et al., Nucleic Acids Res. 33, 6083 (2005).CrossRefGoogle Scholar
  24. [24]
    Z. Wang and J. Zhang, Genome Biol. Evol. 1, 2333 (2009).CrossRefGoogle Scholar
  25. [25]
    E. Borenstein, M. Kupiec, M. W. Feldman and E. Ruppin, Proc. Nat. Acad. Sci. USA 105, 14482 (2008).ADSCrossRefGoogle Scholar
  26. [26]
    O. Ebenhöh, T. Handorf and R. Heinrich, Genome Inform. 16, 203 (2005).Google Scholar
  27. [27]
    D-S. Lee et al., Proc. Nat. Acad. Sci. USA 105, 9880 (2008).ADSCrossRefGoogle Scholar
  28. [28]
    K. Faust, P. Dupont, J. Callut and J. van Helden, Bioinformatics 26, 1211 (2010).CrossRefGoogle Scholar
  29. [29]
    D. Croes, F. Couche, S. J. Wodak and J. van Helden, Nucleic Acids Res. 33, W326 (2005).CrossRefGoogle Scholar
  30. [30]
    K. R. Patil and J. Nielsen, Proc. Nat. Acad. Sci. USA 102, 2685 (2005).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.SS, CTP and Department of Physics and AstronomySeoul National UniversitySeoulKorea
  2. 2.Department of EconomicsUniversity of MichiganAnn ArborUSA
  3. 3.Department of PhysicsInha UniversityIncheonKorea

Personalised recommendations