Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 5, pp 502–507 | Cite as

Crystal Phase Control of ε-Ga2O3 Fabricated using by Metal-Organic Chemical Vapor Deposition

  • Sang Hun Park
  • Han Sol Lee
  • Hyung Soo Ahn
  • Min YangEmail author
Article
  • 18 Downloads

Abstract

ε-Ga2O3 thin films were grown on (0001) sapphire, (0001) GaN, and a low-temperature buffer layer at different temperatures and flow rates of bubbled H2O (oxygen source) using trimethylgallium and H2O as precursors by using atmospheric-pressure metal-organic chemical vapor deposition. Due to the atmospheric pressure conditions, most of the Ga2O3 thin films were not grown in a pure ε-phase, but contain a small portion of the β-phase. The crystal structure, crystal quality, phase ratio, and surface morphology were analyzed by using X-ray diffraction, rocking curve measurements, and field-emission scanning electron microscopy. A certain minimum H2O flow rate was required to form ε-Ga2O3 thin films, and the optimal growth temperature for ε-Ga2O3 was 650°C. The β-phase fraction of the mixed-phase (ε + β) thin films was dominant at temperatures higher than 650 °C. The crystallinities and phase compositions of the thin films changed with the flow rate of H2O. Nearly single-crystalline Ga2O3 thin films were successfully grown on GaN and sapphire, but not on a low-temperature buffer layer. Hexagonally shaped Ga2O3 islands become aligned in an ordered direction that correlated to the substrate’s orientation during the initial stage of the growth and coalesced to complete a two-dimensional layer as the growth went on.

Keywords

Surface structure Metal-organic chemical vapor deposition Oxides Semiconducting gallium compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Higashiwaki et al., Semicond. Sci. Tech. 31, 034001 (2016).ADSCrossRefGoogle Scholar
  2. [2]
    Y. Kokubun, K. Miura, F. Endo and S. Nakagomi, Appl. Phys. Lett. 90, 031912 (2007).ADSCrossRefGoogle Scholar
  3. [3]
    M. Bartic, Physica Status Solidi (a) 213, 457 (2015).ADSCrossRefGoogle Scholar
  4. [4]
    Y. Li, A. Trinchi, W. Wlodarski, K. Galatsis and K. Kalantar-zadeh, Sensors and Actuators B: Chemical 93, 431 (2003).CrossRefGoogle Scholar
  5. [5]
    R. Roy, V. Hill and E. Osborn, J. Am. Chem. Soc. 74, 719 (1952).CrossRefGoogle Scholar
  6. [6]
    S. Geller, J. Chem. Phys. 33, 676 (1960).ADSCrossRefGoogle Scholar
  7. [7]
    H. Tippins, Phys. Rev. 140, A316 (1965).ADSCrossRefGoogle Scholar
  8. [8]
    D. Gogova, M. Schmidbauer and A. Kwasniewski, CrystEngComm 17, 6744 (2015).CrossRefGoogle Scholar
  9. [9]
    H. Playford, A. Hannon, E. Barney and R. Walton, Chem. - A European J. 19, 2803 (2013).CrossRefGoogle Scholar
  10. [10]
    F. Boschi, M. Bosi, T. Berzina, E. Buffagni, C. Ferrari and R. Fornari, J. Crys. Growth 443, 25 (2016).ADSCrossRefGoogle Scholar
  11. [11]
    F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi and R. Fornari, Inorgan. Chem. 55, 12079 (2016).CrossRefGoogle Scholar
  12. [12]
    I. Cora et al., CrystEngComm 19, 1509 (2017).CrossRefGoogle Scholar
  13. [13]
    M. Pavesi et al., Mater. Chem. Phys. 205, 502 (2018).CrossRefGoogle Scholar
  14. [14]
    Y. Oshima, E. Víllora, Y. Matsushita, S. Yamamoto and K. Shimamura, J. Appl. Phys. 118, 085301 (2015).ADSCrossRefGoogle Scholar
  15. [15]
    X. Xia et al., Appl. Phys. Lett. 108, 202103 (2016).ADSCrossRefGoogle Scholar
  16. [16]
    E. Korhonen, F. Tuomisto, D. Gogova, G. Wagner, M. Baldini, Z. Galazka, R. Schewski and M. Albrecht, Appl. Phys. Lett. 106, 242103 (2015).ADSCrossRefGoogle Scholar
  17. [17]
    Y. Zhuo, Z. Chen, W. Tu, X. Ma, Y. Pei and G. Wang, Appl. Surf. Sci. 420, 802 (2017).ADSCrossRefGoogle Scholar
  18. [18]
    S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga and I. Tanaka, J. Phys.: Conden. Matter 19, 346211 (2007).Google Scholar
  19. [19]
    Y. Chen, X. Xia, H. Liang, Q. Abbas, Y. Liu and G. Du, Crys. Growth & Design 18, 1147 (2018).CrossRefGoogle Scholar
  20. [20]
    D. Tahara, H. Nishinaka, S. Morimoto and M. Yoshimoto, Jpn. J. Appl. Phys. 56, 078004 (2017).ADSCrossRefGoogle Scholar
  21. [21]
    Y. Oshima, E. Víllora and K. Shimamura, Appl. Phys. Exp. 8, 055501 (2015).ADSCrossRefGoogle Scholar
  22. [22]
    M. Moram and M. Vickers, Rep. Prog. Phys. 72, 036502 (2009).ADSCrossRefGoogle Scholar
  23. [23]
    S. Adhikari, S. Patra, A. Lunia, S. Kumar, P. Parjapat, B. Kushwaha, P. Kumar, S. Singh, A. Chauhan, K. Singh, S. Pal and C. Dhanavantri, J. Appl. Math. Phys. 2, 1113 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Sang Hun Park
    • 1
  • Han Sol Lee
    • 1
  • Hyung Soo Ahn
    • 1
  • Min Yang
    • 1
    Email author
  1. 1.Department of Materials EngineeringKorea Maritime and Ocean UniversityBusanKorea

Personalised recommendations