Journal of the Korean Physical Society

, Volume 74, Issue 1, pp 41–47 | Cite as

Hybridization Effects of Normal Insulator on Two-Dimensional Topological Insulator

  • Jiseon Shin
  • Gun Sang JeonEmail author


We consider a geometry where a quantum spin Hall insulator and a normal insulator are in contact with each other on the same plane. We show that our numerical results in finite-system approach agree with analytic results of an earlier work in a quantum spin Hall insulator. We discuss the effects of properties of normal insulators on the probability density of edge states at the interface. The edge-state width is computed by varying the interface hopping and the staggered lattice potential. We also attempt to explain the energy dispersions of edge states by constructing effective Hamiltonian and discuss its validity.


Topological insulator Edge states Spin-orbit coupling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  2. [2]
    X-L. Qi and S-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).ADSCrossRefGoogle Scholar
  3. [3]
    L. Fu, Phys. Rev. Lett. 106, 106802 (2011).ADSCrossRefGoogle Scholar
  4. [4]
    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).ADSCrossRefGoogle Scholar
  5. [5]
    B. A. Bernevig, T. L. Hughes and S-C. Zhang, Science 314, 1757 (2006).ADSCrossRefGoogle Scholar
  6. [6]
    Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava and M. Z. Hasan, Nat. Phys. 5, 398 (2009).CrossRefGoogle Scholar
  7. [7]
    H. Zhang, C-X. Liu, X-L. Qi, X. Dai, Z. Fang and S-C. Zhang, Nat. Phys. 5, 438 (2009).CrossRefGoogle Scholar
  8. [8]
    A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).ADSCrossRefGoogle Scholar
  9. [9]
    X. Li, X. Wang, L. Zhang, S. Lee and H. Dai, Science 319, 1229 (2008).ADSCrossRefGoogle Scholar
  10. [10]
    S. Fujii and T. Enoki, J. Am. Chem. Soc. 132, 10034 (2010).CrossRefGoogle Scholar
  11. [11]
    J. Campos-Delgado, J. M. Romo-Herrera, X. Jia, D. A. Cullen, H. Muramatsu, Y. A. Kim, T. Hayashi, Z. Ren, D. J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M. S. Dresselhaus and M. Terrones, Nano Lett. 8, 2773 (2008).ADSCrossRefGoogle Scholar
  12. [12]
    L. Jiao, L. Zhang, X. Wang, G. Diankov and H. Dai, Nature 458, 877 (2009).ADSCrossRefGoogle Scholar
  13. [13]
    D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price and J. M. Tour, Nature 458, 872 (2009).ADSCrossRefGoogle Scholar
  14. [14]
    P. Ruffieux, S. Wang, B. Yang, C. Sanchez-Sanchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C. A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Müllen and R. Fasel, Nature 531, 489 (2016).ADSCrossRefGoogle Scholar
  15. [15]
    H. Doh and G. S. Jeon, Phys. Rev. B 88, 245115 (2013).ADSCrossRefGoogle Scholar
  16. [16]
    C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).ADSCrossRefGoogle Scholar
  17. [17]
    M. Creutz and I. Horváth, Phys. Rev. D 50, 2297 (1994).ADSCrossRefGoogle Scholar
  18. [18]
    M. Creutz, Rev. Mod. Phys. 73, 119 (2001).ADSCrossRefGoogle Scholar
  19. [19]
    Z. Wang, N. Hao and P. Zhang, Phys. Rev. B 80, 115420 (2009).ADSCrossRefGoogle Scholar
  20. [20]
    M. König, H. Buhmann, L. W. Molenkamp, T. Hughes, C-X. Liu, X-L. Qi and S-C. Zhang, J. Phys. Soc. Jpn. 77, 031007 (2008).ADSCrossRefGoogle Scholar
  21. [21]
    M. Fujita, K. Wakabayashi, K. Nakada and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsEwha Womans UniversitySeoulKorea

Personalised recommendations