Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 1, pp 36–40 | Cite as

Electromodulation of the Negative Differential Resistance in an AlGaAs/GaAs Resonant Tunneling Diode

  • Shaffa Almansour
  • Hassen DakhlaouiEmail author
Article
  • 4 Downloads

Abstract

In this work, we investigate the impact of the width of the AlGaAs right barrier and the doping concentration in the contact layers on the negative differential resistance (NDR) and the device performance of a double-barrier AlGaAs/GaAs resonant tunneling diode (RTD). Our simulation is performed using a non-equilibrium Green’s formalism (NEGF). The obtained results show that increasing the width Lb2 of the right barrier, strongly reduces the peak-to-valley current ratio (PVCR. Especially, it reduces from 2.5 for symmetric RTD AlGaAs (5 nm) / GaAs (5 nm) to 1.1 when the right barrier AlGaAs is equal to 8 nm. Our findings show that a specific width of the right barrier Lb2 = 9 nm exists for which the NDR disappears completely. In addition, an increase in the doping concentration in the contact layers is found to reduce the (PVCR) and, consequently, the (NDR). These results open the door for designing resonant tunneling diodes with suitable negative differential resistances. The simulation of the RTD is performed with the use of Nanohub tools which confirms the various results presented in this paper.

Keywords

Resonant tunneling diode Current-voltage characteristics Negative differential resistance Schrodinger equation Peak to valley ratio 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. J. Wei et al., Solid. State. Circ. 28, 697 (1993).ADSCrossRefGoogle Scholar
  2. [2]
    C. E. Chang et al., IEEE Electron. Dev. Lett. 8, 297 (1987).ADSCrossRefGoogle Scholar
  3. [3]
    H. Tews, Superlatt. Microstruct. 8, 467 (1990).ADSCrossRefGoogle Scholar
  4. [4]
    A. C. Seabaugh et al., Electron. Lett. 29, 1802 (1993).ADSCrossRefGoogle Scholar
  5. [5]
    D. H. Chow et al., IEEE Electron. Dev. Lett. 17, 69 (1996).ADSCrossRefGoogle Scholar
  6. [6]
    S. Mohan et al., IEEE Trans. Comput. Aided Des. 14, 653 (1995).CrossRefGoogle Scholar
  7. [7]
    L. Esaki and R. Tsu, IBM J. Res. Dev. 14, 61 (1970).CrossRefGoogle Scholar
  8. [8]
    M. Feiginov et al., Appl. Phys. Lett. 99, 233506 (2011).ADSCrossRefGoogle Scholar
  9. [9]
    S. Almansour and D. Hassen., Optics and Photonics Journal 4, 39 (2014).ADSCrossRefGoogle Scholar
  10. [10]
    M. Feiginov et al., Appl. Phys. Lett. 104, 243509 (2014).ADSCrossRefGoogle Scholar
  11. [11]
    M. Tonouchi, Nat. Photon. 1, 97 (2007).ADSCrossRefGoogle Scholar
  12. [12]
    M. Tsuchiya et al., Jpn. J. Appl. Phys. 24, 466 (1985).CrossRefGoogle Scholar
  13. [13]
    P. Dasmahapatra et al., Semiconduct. Sci. Technol. 8, 27 (2012).Google Scholar
  14. [14]
    M. Tsuchiya and H. Sakaki. Appl. Phys. Lett. 49, 88 (1986).ADSCrossRefGoogle Scholar
  15. [15]
    A. J. Tsao et al., J. Vac. Sci. Techonol. B 10, 1042 (1992).CrossRefGoogle Scholar
  16. [16]
    E. Wolak et al., J. Appl. Phys. 69, 3345 (1991).ADSCrossRefGoogle Scholar
  17. [17]
    A. Forstert et al., J. Phys. D Appl. Phys. 27, 175 (1994).ADSCrossRefGoogle Scholar
  18. [18]
    M. Shiraishi et al., Jpn. J. Appl. Phys. 49, 020211 (2010).ADSCrossRefGoogle Scholar
  19. [19]
    H. J. El-Khozondar et al., Optik. 124, 6100 (2013).ADSCrossRefGoogle Scholar
  20. [20]
    V. I. Egorkin et al., Semiconductors 45, 1638 (2011).ADSCrossRefGoogle Scholar
  21. [21]
    W. K. Chen et al., Appl. Phys. Lett. 71, 1373 (1997).ADSCrossRefGoogle Scholar
  22. [22]
    B. Jogai et al., J. Vac. Sci. Technol. B 9, 143 (1991).CrossRefGoogle Scholar
  23. [23]
    M. A. Remnev and V. F. Elesin, Semiconductors 44, 1034 (2010).ADSCrossRefGoogle Scholar
  24. [24]
    V. F. Elesin et al., Semiconductors 43, 257 (2009).ADSCrossRefGoogle Scholar
  25. [25]
    H. Dakhlaoui, Chin. Phys. Lett. 30, 077304 (2013).CrossRefGoogle Scholar
  26. [26]
    H. Dakhlaoui, Optik. 124, 3726 (2013).ADSCrossRefGoogle Scholar
  27. [27]
    H. Dakhlaoui et al., Superlatt. Microstruct. 77, 196 (2015).ADSCrossRefGoogle Scholar
  28. [28]
    H. Dakhlaoui, Chin. Phys. B 23, 097304 (2014).CrossRefGoogle Scholar
  29. [29]
    R. Djelti et al., Optik. 124, 3812 (2013).ADSCrossRefGoogle Scholar
  30. [30]
    H. Dakhlaoui, Superlatt. Microstruct. 97, 439 (2016).ADSCrossRefGoogle Scholar
  31. [31]
    S. Datta, in 2000 Proceedings of the International Electron Devices Meeting (2000), p. 70.Google Scholar
  32. [32]
    H. Dakhlaoui and S. Almansour. Chin. Phys. B 25, 067304 (2016).CrossRefGoogle Scholar
  33. [33]
  34. [34]
    S. Steiger, M. Povolotskyi, H-H. Park, T. Kubis and G. Klimeck, in IEEE Transactions on Nanotechnology (2011), p. 1464, doi:10.1109/TNANO.2011.2166164.Google Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Physics, College of Sciences for GirlsImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations