Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 4, pp 349–357 | Cite as

A Dielectric-Modulated Normally-Off AlGaN/GaN MOSHEMT for Bio-Sensing Application: Analytical Modeling Study and Sensitivity Analysis

  • S. N. Mishra
  • K. JenaEmail author
Article
  • 25 Downloads

Abstract

This paper presents an analytical model of a bio-molecule-induced threshold voltage shift (ΔVth) in a normally-off AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors (MOSHEMTs) used as bio-particle sensors. In the analytical model, the presence of biomolecules is represented by using the dielectric modulation (DM) technique for label-free electrical detection. The dielectric/semiconductor interface density-of-State (DOS)-dependent model for the density of two dimensional electron gas (2DEG) is obtained by solving a 2-D Poisson equation demonstrating required energy band diagrams. The effective capacitance in the cavity region and the threshold voltage are obtained by using dielectric modulation and the Poisson equation. Subsequently, the changes in the threshold voltage and the drain current of the device are used as the sensing metric for the detection of bio-molecules in the cavity region. Interestingly, the charge of the biomolecules can also used as a sensing parameter. The predicted sensing metric characteristics of the developed analytical model are in good agreement with the result of technology computer-aided design (TCAD) simulations, thus confirming the validity of the proposed model.

Keywords

2DEG Gallium nitride (GaN) Aluminum gallium nitride (AlGaN) MOSHEMT Biosensor TCAD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Kalra, M. J. Kumar and A. Dhawan, IEEE Electron Dev. Lett. 37, 1485 (2016).ADSCrossRefGoogle Scholar
  2. [2]
    H. Im, X. J. Huang, B. Gu and Y. K. Choi, Nat. Nanotechnol. 2, 430 (2007).ADSCrossRefGoogle Scholar
  3. [3]
    D. Moon, J. W. Han and M. Meyyappan, IEEE Trans. Nanotechnol. 15, 956 (2015).ADSCrossRefGoogle Scholar
  4. [4]
    P. Bergveld, Sensors and Actuators B. Chem. 88, 1 (2003).CrossRefGoogle Scholar
  5. [5]
    L. Bousse, N. F. Derooij and P. Bergaveld, IEEE Trans. Electron Dev. 10, 1263 (1983).ADSCrossRefGoogle Scholar
  6. [6]
    J. Xu, X. L. Luo and H. Y. Chen, Front. Biosci. 10, 420 (2005).CrossRefGoogle Scholar
  7. [7]
    S. Kim, D. Baek, J. Y. Kim, S. J. Choi, M. L. Seol and Y-K. Choi, Appl. Phys. Lett. 101, 073703 (2012).ADSCrossRefGoogle Scholar
  8. [8]
    S. Khandlewal and T. A. Fjeldly, Solid-State Electron. 76, 60 (2012).ADSCrossRefGoogle Scholar
  9. [9]
    Ajay, R. Narang, M. Saxena and M. Gupta, Superlattices Microstruct. 88, 225 (2015).ADSCrossRefGoogle Scholar
  10. [10]
    R. Narang, K. V. S. Reddy, M. Saxena, R. S. Gupta and M. Gupta, IEEE Trans. Electron Dev. 59, 2809 (2012).ADSCrossRefGoogle Scholar
  11. [11]
    R. Narang, M. Saxena, R. S. Gupta and M. Gupta, IEEE Electron Dev. Lett. 33, 266 (2012).ADSCrossRefGoogle Scholar
  12. [12]
    Ajay, R. Narang, M. Saxena and M. Gupta, IEEE Electron Dev. Lett. 62, 2636 (2015).CrossRefGoogle Scholar
  13. [13]
    J. M. Choi, J. W. Han, S. J. Choi and Y. K. Choi, IEEE Trans. Electron Dev. 57, 3477 (2010).ADSCrossRefGoogle Scholar
  14. [14]
    J. Y. Kim et al., Bio Nano Science 2, 35 (2012).Google Scholar
  15. [15]
    Ajay, R. Narang, M. Saxena and M. Gupta, Superlattices Microstruct. 85, 557 (2015).ADSCrossRefGoogle Scholar
  16. [16]
    K. W. Lee et al., Appl. Phys. Lett. 96, 033703–1 (2010).ADSCrossRefGoogle Scholar
  17. [17]
    M. S. Parihar and A. Kranti, Nanotechnology 26, 145201 (2015).ADSCrossRefGoogle Scholar
  18. [18]
    S. J. Pearton, F. Ren and B. H. Chu, State of the Art in Biosensors (IntechOpen, 2013), p. 225.Google Scholar
  19. [19]
    K. Jena, R. Swain and T. R. Lenka, J. Korean Phys. Soc. 67, 1592 (2015).ADSCrossRefGoogle Scholar
  20. [20]
    K. Jena, R. Swain and T. R. Lenka, IET Circ. Dev. & Sys. 10, 423 (2016).CrossRefGoogle Scholar
  21. [21]
    R. Swain, K. Jena and T. R. Lenka, Superlattices Microstruct. 84, 54 (2015).ADSCrossRefGoogle Scholar
  22. [22]
    J. Panda, K. Jena, R. Swain and T. R. Lenka, J. Semicon. 37, 044003 (2016).CrossRefGoogle Scholar
  23. [23]
    Sentaurus Device User Guide, Version G-2012. 06, Synopsys Inc., 2012.Google Scholar
  24. [24]
    J. M. Kinsella and A. Ivanisevic, Nat. Nanotechnol. 2, 596 (2007).ADSCrossRefGoogle Scholar
  25. [25]
    R. Swain, K. Jena and T. R. Lenka, Semicond. 50, 384 (2016).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.School of Electronics EngineeringKIIT (Deemed to be University)OdishaIndia
  2. 2.Department of ECELNM Institute of Information TechnologyJaipurIndia

Personalised recommendations