Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 191–195 | Cite as

Ion-Intercalation Assisted Solvothermal Synthesis and Optical Characterization of MoS2 Quantum Dots

  • Luqman Ali
  • Seokjae Bang
  • Yong Joong Lee
  • Clare Chisu ByeonEmail author
Article
  • 8 Downloads

Abstract

Many of the previously reported preparation methods for MoS2 quantum dots (QDs) are limited by production rate, time consumption, tedious processes or the final quality of the as-prepared QDs. Therefore, a simple and productive method for large-scale production of high-quality MoS2 QDs is still a challenge. We report a facile, low cost and environmentally friendly ion-intercalation assisted solvothermal route for the preparation of MoS2 QDs. In the reported method, NaOH is used as the Na+ ion source to intercalate and exfoliate the commercial MoS2 powder into nanosheets and then QDs. The reaction is carried out at a certain temperature in a Teflon-lined autoclave reactor. The UV-Vis absorption spectra of the as synthesized QDs show a peak in the near UV region (λ < 300 nm) instead of the characteristic peaks for the nanosheets. Characterization by X-ray diffraction, atomic force microscopy and photoluminescence spectroscopy also confirmed that the as-synthesized QDs had a uniform size distribution in the range of a few nanometers with mostly a monolayer structure and showed good photoluminescence (PL) properties. The proposed method has much potential for further enhancing the yield of MoS2 QDs by taking advantage of the nature of solution-based processes.

Keywords

MoS2 quantum dot Ion intercalation Ultrasonic exfoliation Photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. S. Donley, P. T. Murray, S. A. Barber and T. W. Haas, Surf. and Coat. Tech. 36, 329 (1988).CrossRefGoogle Scholar
  2. [2]
    J. S. Zabinski, M. S. Donley, P. J. John, V. J. Dyhouse, A. J. Safriet and N. T. McDevitt, MRS Proceedings 201, 195 (2011).CrossRefGoogle Scholar
  3. [3]
    M. A. Albiter, R. Huirache-Acuña, F. Paraguay-Delgado, J. L. Rico and G. Alonso-Nuñez, Nanotechnology 17, 3473 (2006).ADSCrossRefGoogle Scholar
  4. [4]
    Y. Tian, J. Zhao, W. Fu, Y. Liu, Y. Zhu and Z. Wang, Mater. Lett. 59, 3452 (2005).CrossRefGoogle Scholar
  5. [5]
    D. Gopalakrishnan, D. Damien and M. M. Shaijumon, ACS Nano 8, 5297 (2014).CrossRefGoogle Scholar
  6. [6]
    M. A. El-Sayed, Acc. Chem. Res. 37, 326 (2004).CrossRefGoogle Scholar
  7. [7]
    Y. Yin and A. P. Alivisatos, Nature 437, 664 (2004).ADSCrossRefGoogle Scholar
  8. [8]
    R. Rossetti, S. Nakahara and L. E. Brus, J. Chem. Phys. 79, 1086 (1983).ADSCrossRefGoogle Scholar
  9. [9]
    G. Schmid, Chem. Rev. 92, 1709 (1992).CrossRefGoogle Scholar
  10. [10]
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli and F. Wang, Nano Letters 10, 1271 (2010).ADSCrossRefGoogle Scholar
  11. [11]
    Y. Li, Z. Zhou, S. Zhang and Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008).CrossRefGoogle Scholar
  12. [12]
    J. R. Lince and P. D. Fleischauer, J. Mater. Res. 2, 827 (1987).ADSCrossRefGoogle Scholar
  13. [13]
    H. Dong, S. Tang, Y. Hao, H. Yu, W. Dai, G. Zhao, Y. Cao, H. Lu, X. Zhang and H. Ju, ACS Appl. Mater. Interfaces 8, 3107 (2016).CrossRefGoogle Scholar
  14. [14]
    Y. Yoon, K. Ganapathi and S. Salahuddin, Nano Letters 11, 3768 (2011).ADSCrossRefGoogle Scholar
  15. [15]
    H. S. Lee, S-W. Min, Y-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu and S. Im, Nano Letters 12, 3695 (2012).ADSCrossRefGoogle Scholar
  16. [16]
    J. Kibsgaard, Z. Chen, B. N. Reinecke and T. F. Jaramillo, Nature Mater. 11, 963 (2012).ADSCrossRefGoogle Scholar
  17. [17]
    X. Ren, L. Pang, Y. Zhang, X. Ren, H. Fan and S. F. Liu, J. Mater. Chem. A 3, 10693 (2015).CrossRefGoogle Scholar
  18. [18]
    H. Huang, C. Du, H. Shi, X. Feng, J. Li, Y. Tan and W. Song, Particle & Particle Syst. Character. 32, 72 (2015).CrossRefGoogle Scholar
  19. [19]
    G. Du, Z. Guo, S. Wang, R. Zeng, Z. Chen and H. Liu, Chem. Commun. 46, 1106 (2010).CrossRefGoogle Scholar
  20. [20]
    H. Lin, C. Wang, J. Wu, Z. Xu, Y. Huang and C. Zhang, New J. Chem. 39, 8492 (2015).CrossRefGoogle Scholar
  21. [21]
    W. Gu, Y. Yan, X. Cao, C. Zhang, C. Ding and Y. Xian, J. Mater. Chem. B 4, 27 (2016).Google Scholar
  22. [22]
    X. Wang, Q. Wu, K. Jiang, C. Wang and C. Zhang, Sensors and Actuators B: Chem. 252, 183 (2017).CrossRefGoogle Scholar
  23. [23]
    R. R. Chianelli, M. H. Siadati, M. P. De la Rosa, G. Berhault, J. P. Wilcoxon, R. Bearden and B. L. Abrams, Catalysis Rev. 48, 1 (2006).CrossRefGoogle Scholar
  24. [24]
    J. Sun, L. Duan, Q. Wu and W. Yao, Chem. Engin. J. 332, 449 (2018).CrossRefGoogle Scholar
  25. [25]
    A. Ayari, E. Cobas, O. Ogundadegbe and M. S. Fuhrer, J. Appl. Phys. 101, 014507 (2007).ADSCrossRefGoogle Scholar
  26. [26]
    B. L. Li, L. X. Chen, H. L. Zou, J. L. Lei, H. Q. Luo and N. B. Li, Nanoscale 6, 9831 (2014).ADSCrossRefGoogle Scholar
  27. [27]
    S. Xu, D. Li and P. Wu, Adv. Funct. Mater. 25, 1127 (2015).CrossRefGoogle Scholar
  28. [28]
    H. D. Ha, D. J. Han, J. S. Choi, M. Park and T. S. Seo, Small 10, 3858 (2014).CrossRefGoogle Scholar
  29. [29]
    B. Han and Y. H. Hu, Energy Sci. Engin. 4, 285 (2016).CrossRefGoogle Scholar
  30. [30]
    J. Benson, M. Li, S. Wang, P. Wang and P. Papakonstantinou, ACS Appl. Mater. Interfaces 7, 14113 (2015).CrossRefGoogle Scholar
  31. [31]
    Y. Wang, Y. Liu, J. Zhang, J. Wu, H. Xu, X. Wen, X. Zhang, C. S. Tiwary, W. Yang and R. Vajtai, Sci. Adv. 3, e1701500 (2017).ADSCrossRefGoogle Scholar
  32. [32]
    B. Li, L. Jiang, X. Li, P. Ran, P. Zuo, A. Wang, L. Qu, Y. Zhao, Z. Cheng and Y. Lu, Sci. Rept. 7, 11182 (2017).ADSCrossRefGoogle Scholar
  33. [33]
    Y. Xu, L. Wang, X. Liu, S. Zhang, C. Liu, D. Yan, Y. Zeng, Y. Pei, Y. Liu and S. Luo, J. Mater. Chem. A 4, 16524 (2016).CrossRefGoogle Scholar
  34. [34]
    K-K. Liu, W. Zhang, Y-H. Lee, Y-C. Lin, M-T. Chang, C-Y. Su, C-S. Chang, H. Li, Y. Shi and H. Zhang, Nano Letters 12, 1538 (2012).ADSCrossRefGoogle Scholar
  35. [35]
    Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H. H. Hng and H. Zhang, Angewandte Chemie International Edition 51, 9052 (2012).CrossRefGoogle Scholar
  36. [36]
    Q. Liu, C. Hu and W. Xiaomin, RSC Adv. 6, 25605 (2016).CrossRefGoogle Scholar
  37. [37]
    F. David, V. Vokhmin and G. Ionova, J. Mol. Liq. 90, 45 (2001).CrossRefGoogle Scholar
  38. [38]
    J. Brandrup, E. Immergut, E. Grulke, A. Abe and D. Bloch, Polymer Handbook (A Wiley-Interscience Publication, Inc., 1999).Google Scholar
  39. [39]
    B. Schonfeld, J. J. Huang and S. C. Moss, Acta Crystallographica Section B 39, 404 (1983).CrossRefGoogle Scholar
  40. [40]
    H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati and C. N. R. Rao, Angewandte Chemie International Edition 49, 4059 (2010).CrossRefGoogle Scholar
  41. [41]
    T. Wang, L. Liu, Z. Zhu, P. Papakonstantinou, J. Hu, H. Liu and M. Li, Energy Environ. Sci. 6, 625 (2013).CrossRefGoogle Scholar
  42. [42]
    J. P. Wilcoxon and G. A. Samara, Phys. Rev. B 51, 7299 (1995).ADSCrossRefGoogle Scholar
  43. [43]
    K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).ADSCrossRefGoogle Scholar
  44. [44]
    V. Chikan and D. F. Kelley, J. Phys. Chem. B 106, 3794 (2002).CrossRefGoogle Scholar
  45. [45]
    N. Liu, P. Kim, J. H. Kim, J. H. Ye, S. Kim and C. J. Lee, ACS Nano 8, 6902 (2014).CrossRefGoogle Scholar
  46. [46]
    N. Wang, F. Wei, Y. Qi, H. Li, X. Lu, G. Zhao and Q. Xu, ACS Appl. Mater. Interfaces 6, 19888 (2014).CrossRefGoogle Scholar
  47. [47]
    V. Stengl and J. Henych, Nanoscale 5, 3387 (2013).ADSCrossRefGoogle Scholar
  48. [48]
    D. B. Shinde and V. K. Pillai, Chem. - A European J. 18, 12522 (2012).CrossRefGoogle Scholar
  49. [49]
    M. Zheng, S. Liu, J. Li, D. Qu, H. Zhao, X. Guan, X. Hu, Z. Xie, X. Jing and Z. Sun, Adv. Mater. 26, 3554 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Luqman Ali
    • 1
  • Seokjae Bang
    • 1
  • Yong Joong Lee
    • 2
  • Clare Chisu Byeon
    • 2
    Email author
  1. 1.Graduate School, Department of Mechanical EngineeringKyungpook National UniversityDaeguKorea
  2. 2.School of Mechanical EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations