Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 191–195 | Cite as

Ion-Intercalation Assisted Solvothermal Synthesis and Optical Characterization of MoS2 Quantum Dots

  • Luqman Ali
  • Seokjae Bang
  • Yong Joong Lee
  • Clare Chisu ByeonEmail author


Many of the previously reported preparation methods for MoS2 quantum dots (QDs) are limited by production rate, time consumption, tedious processes or the final quality of the as-prepared QDs. Therefore, a simple and productive method for large-scale production of high-quality MoS2 QDs is still a challenge. We report a facile, low cost and environmentally friendly ion-intercalation assisted solvothermal route for the preparation of MoS2 QDs. In the reported method, NaOH is used as the Na+ ion source to intercalate and exfoliate the commercial MoS2 powder into nanosheets and then QDs. The reaction is carried out at a certain temperature in a Teflon-lined autoclave reactor. The UV-Vis absorption spectra of the as synthesized QDs show a peak in the near UV region (λ < 300 nm) instead of the characteristic peaks for the nanosheets. Characterization by X-ray diffraction, atomic force microscopy and photoluminescence spectroscopy also confirmed that the as-synthesized QDs had a uniform size distribution in the range of a few nanometers with mostly a monolayer structure and showed good photoluminescence (PL) properties. The proposed method has much potential for further enhancing the yield of MoS2 QDs by taking advantage of the nature of solution-based processes.


MoS2 quantum dot Ion intercalation Ultrasonic exfoliation Photoluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. S. Donley, P. T. Murray, S. A. Barber and T. W. Haas, Surf. and Coat. Tech. 36, 329 (1988).CrossRefGoogle Scholar
  2. [2]
    J. S. Zabinski, M. S. Donley, P. J. John, V. J. Dyhouse, A. J. Safriet and N. T. McDevitt, MRS Proceedings 201, 195 (2011).CrossRefGoogle Scholar
  3. [3]
    M. A. Albiter, R. Huirache-Acuña, F. Paraguay-Delgado, J. L. Rico and G. Alonso-Nuñez, Nanotechnology 17, 3473 (2006).ADSCrossRefGoogle Scholar
  4. [4]
    Y. Tian, J. Zhao, W. Fu, Y. Liu, Y. Zhu and Z. Wang, Mater. Lett. 59, 3452 (2005).CrossRefGoogle Scholar
  5. [5]
    D. Gopalakrishnan, D. Damien and M. M. Shaijumon, ACS Nano 8, 5297 (2014).CrossRefGoogle Scholar
  6. [6]
    M. A. El-Sayed, Acc. Chem. Res. 37, 326 (2004).CrossRefGoogle Scholar
  7. [7]
    Y. Yin and A. P. Alivisatos, Nature 437, 664 (2004).ADSCrossRefGoogle Scholar
  8. [8]
    R. Rossetti, S. Nakahara and L. E. Brus, J. Chem. Phys. 79, 1086 (1983).ADSCrossRefGoogle Scholar
  9. [9]
    G. Schmid, Chem. Rev. 92, 1709 (1992).CrossRefGoogle Scholar
  10. [10]
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galli and F. Wang, Nano Letters 10, 1271 (2010).ADSCrossRefGoogle Scholar
  11. [11]
    Y. Li, Z. Zhou, S. Zhang and Z. Chen, J. Am. Chem. Soc. 130, 16739 (2008).CrossRefGoogle Scholar
  12. [12]
    J. R. Lince and P. D. Fleischauer, J. Mater. Res. 2, 827 (1987).ADSCrossRefGoogle Scholar
  13. [13]
    H. Dong, S. Tang, Y. Hao, H. Yu, W. Dai, G. Zhao, Y. Cao, H. Lu, X. Zhang and H. Ju, ACS Appl. Mater. Interfaces 8, 3107 (2016).CrossRefGoogle Scholar
  14. [14]
    Y. Yoon, K. Ganapathi and S. Salahuddin, Nano Letters 11, 3768 (2011).ADSCrossRefGoogle Scholar
  15. [15]
    H. S. Lee, S-W. Min, Y-G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu and S. Im, Nano Letters 12, 3695 (2012).ADSCrossRefGoogle Scholar
  16. [16]
    J. Kibsgaard, Z. Chen, B. N. Reinecke and T. F. Jaramillo, Nature Mater. 11, 963 (2012).ADSCrossRefGoogle Scholar
  17. [17]
    X. Ren, L. Pang, Y. Zhang, X. Ren, H. Fan and S. F. Liu, J. Mater. Chem. A 3, 10693 (2015).CrossRefGoogle Scholar
  18. [18]
    H. Huang, C. Du, H. Shi, X. Feng, J. Li, Y. Tan and W. Song, Particle & Particle Syst. Character. 32, 72 (2015).CrossRefGoogle Scholar
  19. [19]
    G. Du, Z. Guo, S. Wang, R. Zeng, Z. Chen and H. Liu, Chem. Commun. 46, 1106 (2010).CrossRefGoogle Scholar
  20. [20]
    H. Lin, C. Wang, J. Wu, Z. Xu, Y. Huang and C. Zhang, New J. Chem. 39, 8492 (2015).CrossRefGoogle Scholar
  21. [21]
    W. Gu, Y. Yan, X. Cao, C. Zhang, C. Ding and Y. Xian, J. Mater. Chem. B 4, 27 (2016).Google Scholar
  22. [22]
    X. Wang, Q. Wu, K. Jiang, C. Wang and C. Zhang, Sensors and Actuators B: Chem. 252, 183 (2017).CrossRefGoogle Scholar
  23. [23]
    R. R. Chianelli, M. H. Siadati, M. P. De la Rosa, G. Berhault, J. P. Wilcoxon, R. Bearden and B. L. Abrams, Catalysis Rev. 48, 1 (2006).CrossRefGoogle Scholar
  24. [24]
    J. Sun, L. Duan, Q. Wu and W. Yao, Chem. Engin. J. 332, 449 (2018).CrossRefGoogle Scholar
  25. [25]
    A. Ayari, E. Cobas, O. Ogundadegbe and M. S. Fuhrer, J. Appl. Phys. 101, 014507 (2007).ADSCrossRefGoogle Scholar
  26. [26]
    B. L. Li, L. X. Chen, H. L. Zou, J. L. Lei, H. Q. Luo and N. B. Li, Nanoscale 6, 9831 (2014).ADSCrossRefGoogle Scholar
  27. [27]
    S. Xu, D. Li and P. Wu, Adv. Funct. Mater. 25, 1127 (2015).CrossRefGoogle Scholar
  28. [28]
    H. D. Ha, D. J. Han, J. S. Choi, M. Park and T. S. Seo, Small 10, 3858 (2014).CrossRefGoogle Scholar
  29. [29]
    B. Han and Y. H. Hu, Energy Sci. Engin. 4, 285 (2016).CrossRefGoogle Scholar
  30. [30]
    J. Benson, M. Li, S. Wang, P. Wang and P. Papakonstantinou, ACS Appl. Mater. Interfaces 7, 14113 (2015).CrossRefGoogle Scholar
  31. [31]
    Y. Wang, Y. Liu, J. Zhang, J. Wu, H. Xu, X. Wen, X. Zhang, C. S. Tiwary, W. Yang and R. Vajtai, Sci. Adv. 3, e1701500 (2017).ADSCrossRefGoogle Scholar
  32. [32]
    B. Li, L. Jiang, X. Li, P. Ran, P. Zuo, A. Wang, L. Qu, Y. Zhao, Z. Cheng and Y. Lu, Sci. Rept. 7, 11182 (2017).ADSCrossRefGoogle Scholar
  33. [33]
    Y. Xu, L. Wang, X. Liu, S. Zhang, C. Liu, D. Yan, Y. Zeng, Y. Pei, Y. Liu and S. Luo, J. Mater. Chem. A 4, 16524 (2016).CrossRefGoogle Scholar
  34. [34]
    K-K. Liu, W. Zhang, Y-H. Lee, Y-C. Lin, M-T. Chang, C-Y. Su, C-S. Chang, H. Li, Y. Shi and H. Zhang, Nano Letters 12, 1538 (2012).ADSCrossRefGoogle Scholar
  35. [35]
    Z. Zeng, T. Sun, J. Zhu, X. Huang, Z. Yin, G. Lu, Z. Fan, Q. Yan, H. H. Hng and H. Zhang, Angewandte Chemie International Edition 51, 9052 (2012).CrossRefGoogle Scholar
  36. [36]
    Q. Liu, C. Hu and W. Xiaomin, RSC Adv. 6, 25605 (2016).CrossRefGoogle Scholar
  37. [37]
    F. David, V. Vokhmin and G. Ionova, J. Mol. Liq. 90, 45 (2001).CrossRefGoogle Scholar
  38. [38]
    J. Brandrup, E. Immergut, E. Grulke, A. Abe and D. Bloch, Polymer Handbook (A Wiley-Interscience Publication, Inc., 1999).Google Scholar
  39. [39]
    B. Schonfeld, J. J. Huang and S. C. Moss, Acta Crystallographica Section B 39, 404 (1983).CrossRefGoogle Scholar
  40. [40]
    H. S. S. Ramakrishna Matte, A. Gomathi, A. K. Manna, D. J. Late, R. Datta, S. K. Pati and C. N. R. Rao, Angewandte Chemie International Edition 49, 4059 (2010).CrossRefGoogle Scholar
  41. [41]
    T. Wang, L. Liu, Z. Zhu, P. Papakonstantinou, J. Hu, H. Liu and M. Li, Energy Environ. Sci. 6, 625 (2013).CrossRefGoogle Scholar
  42. [42]
    J. P. Wilcoxon and G. A. Samara, Phys. Rev. B 51, 7299 (1995).ADSCrossRefGoogle Scholar
  43. [43]
    K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).ADSCrossRefGoogle Scholar
  44. [44]
    V. Chikan and D. F. Kelley, J. Phys. Chem. B 106, 3794 (2002).CrossRefGoogle Scholar
  45. [45]
    N. Liu, P. Kim, J. H. Kim, J. H. Ye, S. Kim and C. J. Lee, ACS Nano 8, 6902 (2014).CrossRefGoogle Scholar
  46. [46]
    N. Wang, F. Wei, Y. Qi, H. Li, X. Lu, G. Zhao and Q. Xu, ACS Appl. Mater. Interfaces 6, 19888 (2014).CrossRefGoogle Scholar
  47. [47]
    V. Stengl and J. Henych, Nanoscale 5, 3387 (2013).ADSCrossRefGoogle Scholar
  48. [48]
    D. B. Shinde and V. K. Pillai, Chem. - A European J. 18, 12522 (2012).CrossRefGoogle Scholar
  49. [49]
    M. Zheng, S. Liu, J. Li, D. Qu, H. Zhao, X. Guan, X. Hu, Z. Xie, X. Jing and Z. Sun, Adv. Mater. 26, 3554 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Luqman Ali
    • 1
  • Seokjae Bang
    • 1
  • Yong Joong Lee
    • 2
  • Clare Chisu Byeon
    • 2
    Email author
  1. 1.Graduate School, Department of Mechanical EngineeringKyungpook National UniversityDaeguKorea
  2. 2.School of Mechanical EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations