Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 187–190 | Cite as

Use of Polyvinylpyrrolidone as a Chelating Agent to Reduce the Calcination Temperature of Li7La3Zr2O12 Synthesized by Using Solution-based Method

  • Jin-Ju Bae
  • Seon-Jin Lee
  • Jong-Tae SonEmail author


In general, several calcination steps and long sintering times at temperatures greater than 1000 - 1200° C are typically needed in order to achieve the more cubic structure. In this study, using polyvinylpyrrolidone as a chelating agent, cubic Li7La3Zr2O12 was synthesized at a low temperature of 900° C by using a solution-based method. The resulting cubic phase contained a small amount of the pyrochlore phase, and the lithium-ion conductivity, as determined by using electrochemical impedance spectroscopy, was 1.09 × 10−6 S/cm at 25° C.


Li7La3Zr2O12 Reducing calcination temperature Solution-based synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    X. Yan, Z. Li, Z. Wen and W. Han, J. Phys. Chem. C 121, 1431 (2017).CrossRefGoogle Scholar
  2. [2]
    M. Armand and J-M. Tarascon, Nature 451, 652 (2008).ADSCrossRefGoogle Scholar
  3. [3]
    V. Thangadurai, S. Narayanan and D. Pinzaru, Chem. Soc. Rev. 43, 4714 (2014).CrossRefGoogle Scholar
  4. [4]
    K. Takada, Acta Mater. 61, 759 (2013).CrossRefGoogle Scholar
  5. [5]
    Y. Zhang, J. Cai, F. Chen, R. Tu, Q. Shen, X. Zhang and L. Zhang, J. Alloy Compd. 644, 793 (2015).CrossRefGoogle Scholar
  6. [6]
    P. Knauth, Solid State Ion. 180, 911 (2009).CrossRefGoogle Scholar
  7. [7]
    J. W. Fergus, J. Power Sources 195, 4554 (2010).ADSCrossRefGoogle Scholar
  8. [8]
    Y. Inaguma, C. Liquan, M. Itoh and T. Nakamura, Solid State Commun. 86, 689 (1993).ADSCrossRefGoogle Scholar
  9. [9]
    R. Kanno, T. Hata, Y. Kawamoto and M. Irie, Solid State Ion. 130, 97 (2000).CrossRefGoogle Scholar
  10. [10]
    A. D. Robertson, A. R. West and A. G. Ritchie, Solid State Ion. 104, 1 (1997).CrossRefGoogle Scholar
  11. [11]
    V. Thangadurai, H. Kaack and W. J. F. Weppner, J. Am. Ceram. Soc. 86, 437 (2003).CrossRefGoogle Scholar
  12. [12]
    V. Thangadurai and W. Weppner, J. Solid State Chem. 179, 974 (2006).ADSCrossRefGoogle Scholar
  13. [13]
    R. Murugan, V. Thangadurai and W. Weppner, Appl. Phys. A 91, 615 (2008).ADSCrossRefGoogle Scholar
  14. [14]
    J. Tan and A. Tiwari, Electrochem. Solid State Lett. 15, A37 (2012).CrossRefGoogle Scholar
  15. [15]
    M. Huang, T. Liu, Y. Deng, H. Geng, Y. Shen, Y. Lin and C-W. Nan, Solid State Ion. 204-205, 41 (2011).CrossRefGoogle Scholar
  16. [16]
    J. Awaka, N. Kijima, H. Hayakawa and J. Akimoto, J. Solid State Chem. 182, 2046 (2009).ADSCrossRefGoogle Scholar
  17. [17]
    M. Kotobuki, H. Munakata, K. Kanamura, Y. Sato and T. Yoshida, J. Electrochem. Soc. 157, A1076 (2010).CrossRefGoogle Scholar
  18. [18]
    D. O. Shin, K. Oh, K. M. Kim, K-Y. Park, B. Lee, Y-G. Lee and K. Kang, Sci. Rep. 5, 18053 (2015).ADSCrossRefGoogle Scholar
  19. [19]
    C. Yang, L. Y. Qiu and G. X. Xin, Chin. Phys. B 22, 078201 (2013).ADSCrossRefGoogle Scholar
  20. [20]
    S. H. Yang, M. Y. Kim, D. H. Kim, H. Y. Jung, H. M. Ryu, J. H. Han, M. S. Lee and H-S. Kim, J. Ind. Eng. Chem. 56, 422 (2017).CrossRefGoogle Scholar
  21. [21]
    R. Takano, K. Tadanaga, A. Hayashi and M. Tatsumisago, Solid State Ion. 255, 104 (2014).CrossRefGoogle Scholar
  22. [22]
    H. E. Shinawi, G. W. Paterson, D. A. Maclaren, E. J. Cussen and S. A. Corr, J. Mater. Chem. A, 5, 319 (2017).CrossRefGoogle Scholar
  23. [23]
    M. Kotobuki, K. Kanamura, Y. Sato and T. Yoshida, J. Power Sources 196, 7750 (2011).ADSCrossRefGoogle Scholar
  24. [24]
    L. J. Miara, W. D. Richards, Y. E. Wang and G. Ceder, Chem. Mater. 27, 4040 (2015).CrossRefGoogle Scholar
  25. [25]
    P. J. Kumar, K. Nishimura, M. Senna, A. Düvel, P. Heitjans, T. Kawaguchi, N. Sakamoto, N. Wakiya and H. Suzuki, RSC Adv. 6, 62656 (2016).CrossRefGoogle Scholar
  26. [26]
    I. Kokal, M. Somer, P. H. L. Notten and H. T. Hintzen, Solid State Ion. 185, 42 (2011).CrossRefGoogle Scholar
  27. [27]
    D. Rettenwander, G. Redhammer, F. P. Pflügl, L. Cheng, L. Miara, R. Wagner, A. Welzl, E. Suard, M. M. Doeff, M. Wilkening, J. Fleig and Georg Amthauer, Chem. Mater. 28, 2384 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Nano Polymer Science & EngineeringKorea National University of TransportationChungjuKorea

Personalised recommendations