Extraordinary Transmission of Light Through Freestanding Au Films with Subwavelength Apertures and Double Slits
- 5 Downloads
Abstract
We demonstrated the extraordinary transmission of light through a freestanding Au thin film with a 7×7 subwavelength aperture array and double slits. Firstly, we observed the dependence of the change in the light transmission through a plasmonic structure on the pitch size of the aperture array. Also, we fabricated a freestanding Au thin film to avoid the effects of absorption and reflection of the substrate. We perforated the 7×7 subwavelength hole array on the Au film for extraordinary optical transmission caused by the electric field enhancement from the structures. Additionally, we designed a hybrid structure composed of 7×7 subwavelength apertures and double slits to enhance the transmission of the light. The normalized-to-area transmission of the hybrid structures was approximately five times greater than that of the structures without double slits.
Keywords
Freestanding metal film Plasmonics Double slits Optical waveguidingPreview
Unable to display preview. Download preview PDF.
References
- [1]H. A. Bethe, Phys. Rev. 66, 163 (1944).ADSMathSciNetCrossRefGoogle Scholar
- [2]W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux and T. W. Ebbesen, Phys. Rev. Lett. 92, 10 (2004).CrossRefGoogle Scholar
- [3]C. Genet and T. W. Ebbesen, Nature 445, 7123 (2007).CrossRefGoogle Scholar
- [4]D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. Han Park, M. S. Jeong and D.-K. Ko, Phys. Rev. B 77, 115451 (2008).ADSCrossRefGoogle Scholar
- [5]S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. Han Park and D. S. Kim, Appl. Phys. Lett. 94, 6 (2009).Google Scholar
- [6]Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun and X. Zhang, Nano Lett. 5, 1726 (2005).ADSCrossRefGoogle Scholar
- [7]P. Christopher, H. Xin, A. Marimuthu and S. Linic, Nature Mater. 11, 1140 (2012).CrossRefGoogle Scholar
- [8]F. G. de Abajo, Optics Express 10, 1475 (2002).ADSCrossRefGoogle Scholar
- [9]P. J. Feibelman and D. R. Hamann, Phys. Rev. B 29, 6463 (1984).ADSCrossRefGoogle Scholar
- [10]Q. Xu, J. Bao, F. Capasso and G. M. Whitesides, Angewandte Chemie - International Edition 45, 3631 (2006).CrossRefGoogle Scholar
- [11]D. J. Park, J. T. Hong, J. K. Park, B. H. Son, F. Rotermund, S. Lee, K. J. Ahn, D. S. Kim and Y. H. Ahn, Curr. Appl. Phys. 13, 753 (2013).ADSCrossRefGoogle Scholar
- [12]P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. Van Den Brink and P. J. Kelly, Phys. Rev. B - Conden. Matter Mater. Phys. 79, 19 (2009).CrossRefGoogle Scholar
- [13]R. Zia and M. L. Brongersma, Nature Nanotech. 2, 426 (2007).ADSCrossRefGoogle Scholar
- [14]H. Kim and B. Lee, Optics Express, 16, 8969 (2008).ADSCrossRefGoogle Scholar
- [15]B. Lee, S. Kim, H. Kim and Y. Lim, Prog. in Quant. Electron. 34, 47 (2010).ADSCrossRefGoogle Scholar
- [16]F. Yan and T. Vo-Dinh, Sensors and Actuators, B: Chem. 121, 61 (2007).CrossRefGoogle Scholar
- [17]W. Ni, Z. Yang, H. Chen, L. Li and J. Wang, J. the Am. Chem. Soc. 130, 6692 (2008).CrossRefGoogle Scholar
- [18]S. Pillai, K. R. Catchpole, T. Trupke and M. A. Green, J. Appl. Phys. 101, 9 (2007)CrossRefGoogle Scholar
- [19]S. S. Choi, M. J. Park, S. J. Oh, C. H. Han, Y. S. Kim and N. K. Park, Physics Status Solidi (A) 215, 1 (2018).Google Scholar
- [20]R. H. Ritchie, Phys. Rev. 106, 874 (1957).ADSMathSciNetCrossRefGoogle Scholar
- [21]L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy and X. Zhang, Sci. Rept. 1, 1 (2011).CrossRefGoogle Scholar
- [22]W. L. Barnes, A. Dereux and T. W. Ebbesen, Nature 424, 824 (2003).ADSCrossRefGoogle Scholar