Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 145–153 | Cite as

Phytic Acid-Doped Cross-linked Polyaniline Nanofibers for Electrochemical Supercapacitor Electrode Applications

  • Sungjin Im
  • Hyeong Jin Kim
  • Koo Shin
  • Hu Young Jeong
  • Won G. Hong
  • Kyungjung Kwon
  • Young Joon HongEmail author
Article
  • 4 Downloads

Abstract

Electrochemical energy storage characteristics of chlorine- and phytic acid-doped polyaniline nanofibers (Cl- and Ph-PAni NFs), which were synthesized via radical polymerization in a hydrochloric acid and a Ph solution, respectively, were comparatively investigated. The Ph-PAni NFs showed a specific capacitance of 227 F g−1, which was two times higher than the value of 105 F g−1 for Cl-PAni NFs at 30 A g−1, due to the enhanced electrical conductivity caused by Ph doping. Moreover, the Ph-PAni NFs presented superior supercapacitor electrode performances in terms of charge-discharge cycle life, specific power, and electrochemical impedance. Diverse spectroscopic analyses revealed that the Ph doping contributed to formation of crosslinks between PAni backbones, which eventually provided many effective electrical conducting paths in the NFs. Thus, the high conductivity is responsible for the high electrochemical activity of Ph-PAni NFs. This approach to increase the electrochemical performances is expected to be applied to other conducting polymeric supercapacitor electrodes for more practical device applications.

Keywords

Polyaniline Nanofiber Phytic acid Crosslink Supercapacitor electrode 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Burke, J. Power Sources 91, 37 (2000).ADSCrossRefGoogle Scholar
  2. [2]
    T. Kim, G. Jung, S. Yoo, K. S. Suh and R. S. Ruoff, ACS Nano 7, 6899 (2013).CrossRefGoogle Scholar
  3. [3]
    D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate et al., Nat. Mater. 5, 987 (2006).ADSCrossRefGoogle Scholar
  4. [4]
    L. L. Zhang and X. S. Zhao, Chem. Soc. Rev. 38, 2520 (2009).CrossRefGoogle Scholar
  5. [5]
    D. Sheberla, J. C. Bachman, J. S. Elias, C-J. Sun, Y. Shao-Horn and M. Dincă, Nat. Mater. 16, 220 (2016).ADSCrossRefGoogle Scholar
  6. [6]
    H. R. Ghenaatian, M. F. Mousavi, S. H. Kazemi and M. Shamsipur, Synth. Met. 159, 1717 (2009).CrossRefGoogle Scholar
  7. [7]
    Kai Zhang, Li Li Zhang, X. S. Zhao and Jishan Wu, Chem. Mat. 22, 1392 (2010).CrossRefGoogle Scholar
  8. [8]
    G. A. Snook, P. Kao and A. S. Best, J. Power Sources 196, 1 (2011).ADSCrossRefGoogle Scholar
  9. [9]
    C. S. Lee and J. Bae, J. Korean Phys. Soc. 63, 2190 (2013).ADSCrossRefGoogle Scholar
  10. [10]
    L. Li, A. R. O. Raji, H. L. Fei, Y. Yang, E. L. G. Samuel and J. M. Tour, ACS Appl. Mater. Interfaces 5, 6622 (2013).CrossRefGoogle Scholar
  11. [11]
    Y. Ko, M. Kwon, W. K. Bae, B. Lee, S. W. Lee and J. Cho, Nat. Commun. 8, 536 (2017).ADSCrossRefGoogle Scholar
  12. [12]
    Y. Q. Liu, B. Weng, Q. Xu, Y. Y. Hou, C. Zhao, S. Beirne et al., Adv. Mater. Technol. 1, (2016).Google Scholar
  13. [13]
    S. W. Kang and J. Bae, Macromol. Res. 26, 226 (2018).CrossRefGoogle Scholar
  14. [14]
    A. G. Macdiarmid, J. C. Chiang, A. F. Richter and A. J. Epstein, Synth. Met. 18, 285 (1987).CrossRefGoogle Scholar
  15. [15]
    K. Zhang, L. L. Zhang, X. S. Zhao and J. S. Wu, Chem. Mater. 22, 1392 (2010).CrossRefGoogle Scholar
  16. [16]
    Z. Zhao, H. D. Chen, H. Zhang, L. N. Ma and Z. X. Wang, Biosens. Bioelectron. 91, 306 (2017).CrossRefGoogle Scholar
  17. [17]
    C. Yang, L. L. Zhang, N. T. Hu, Z. Yang, Y. J. Su, S. S. Xu et al., Chem. Eng. J. 309, 89 (2017).CrossRefGoogle Scholar
  18. [18]
    S. Im, Y. R. Park, S. Park, H. J. Kim, J. H. Doh, K. Kwon et al., Appl. Surf. Sci. 412, 160 (2017).ADSCrossRefGoogle Scholar
  19. [19]
    J. E. Yoo and J. Bae, Macromol. Res. 23, 749 (2015).CrossRefGoogle Scholar
  20. [20]
    H. J. Kim, S. Im, J. C. Kim, W. G. Hong, K. Shin, H. Y. Jeong et al., ACS Sustain. Chem. Eng. 5, 6654 (2017).CrossRefGoogle Scholar
  21. [21]
    M. G. Xavier, E. C. Venancio, E. C. Pereira, F. L. Leite, E. R. Leite, A. G. MacDiarmid et al., J. Nanosci. Nanotechnol. 9, 2169 (2009).CrossRefGoogle Scholar
  22. [22]
    Q. Zhao, J. H. Chen, F. B. Luo, L. Shen, Y. Wang, K. Wu et al., J. Appl. Polym. Sci. 134, 44808 (2017).Google Scholar
  23. [23]
    J. X. Huang, S. Virji, B. H. Weiller and R. B. Kaner, J. Am. Chem. Soc. 125, 314 (2003).CrossRefGoogle Scholar
  24. [24]
    F. Barzegar, A. Bello, O. O. Fashedemi, J. K. Dangbegnon, D. Y. Momodu, F. Taghizadeh et al., Electrochim. Acta 180, 442 (2015).CrossRefGoogle Scholar
  25. [25]
    H. H. Lyu, B. Gao, F. He, C. Ding, J. C. Tang and J. C. Crittenden, ACS Sustain. Chem. Eng. 5, 9568 (2017).CrossRefGoogle Scholar
  26. [26]
    B. Elsener, D. Atzei, A. Krolikowski and A. Rossi, Surf. Interface Anal. 40, 919 (2008).CrossRefGoogle Scholar
  27. [27]
    P. M. Natishan and W. E. O’Grady, J. Electrochem. Soc. 161, C421 (2014).CrossRefGoogle Scholar
  28. [28]
    D. J. Asunskis and P. M. A. Sherwood, J. Vac. Sci. Technol. A 21, 1133 (2003).ADSCrossRefGoogle Scholar
  29. [29]
    L. Li, M. Y. Zhang, Y. Liu and X. T. Zhang, J. Colloid Interface Sci. 435, 26 (2014).ADSCrossRefGoogle Scholar
  30. [30]
    Y. Furukawa, F. Ueda, Y. Hyodo, I. Harada, T. Nakajima and T. Kawagoe, Macromolecules 21, 1297 (1988).ADSCrossRefGoogle Scholar
  31. [31]
    W. W. Shao, R. Jamal and F. Xu, A. Ubul, T. Abdiryim, Materials 5, 1811 (2012).ADSCrossRefGoogle Scholar
  32. [32]
    M. Trchova, I. Sapurina, J. Prokes and J. Stejskal, Synth. Met. 135, 305 (2003).CrossRefGoogle Scholar
  33. [33]
    H. Goto, Polymers 3, 875 (2011).CrossRefGoogle Scholar
  34. [34]
    W. F. Alves, E. C. Venancio, F. L. Leite, D. H. F. Kanda, L. F. Malmonge, J. A. Malmonge et al., Thermochim. Acta 502, 43 (2010).CrossRefGoogle Scholar
  35. [35]
    L. J. Pan, G. H. Yu, D. Y. Zhai, H. R. Lee, W. T. Zhao, N. Liu et al., Proc. Natl. Acad. Sci. 109, 9287 (2012).ADSCrossRefGoogle Scholar
  36. [36]
    L. Zhang, D. Huang, N. Hu, C. Yang, M. Li, M. Wei et al., J. Power Sources 342, 1 (2017).ADSCrossRefGoogle Scholar
  37. [37]
    G. F. Yang, K. Y. Song and S. K. Joo, J. Mater. Chem. A 2, 19648 (2014).CrossRefGoogle Scholar
  38. [38]
    F. Beguin, E. Frackowiak, Supercapacitors: Materials, Systems, and Applications, 1st ed. (Wiley-VCH, Singapore, 2013).CrossRefGoogle Scholar
  39. [39]
    W. Sun and X. Y. Chen, J. Power Sources 193, 924 (2009).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Sungjin Im
    • 1
  • Hyeong Jin Kim
    • 1
  • Koo Shin
    • 1
  • Hu Young Jeong
    • 2
  • Won G. Hong
    • 3
  • Kyungjung Kwon
    • 4
  • Young Joon Hong
    • 5
    Email author
  1. 1.Graphene Research InstituteSejong UniversitySeoulKorea
  2. 2.UNIST Central Research FacilitiesUlsan National Institute of Science and Technology (UNIST)UlsanKorea
  3. 3.Division of Electron Microscopy ResearchKorea Basic Science Institute (KBSI)DaejeonKorea
  4. 4.Department of Energy and Mineral Resources EngineeringSejong UniversitySeoulKorea
  5. 5.Department of Nanotechnology & Advanced Materials EngineeringSejong UniversitySeoulKorea

Personalised recommendations