Skip to main content
Log in

Electrochemical Doping of Graphene with H2SO4 Electrolyte

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Because graphene has been studied for applications to both flexible and transparent electrodes, conductivity improvements by tuning the doping condition represent a significant strategy. Although electrolyte gating avenues for tuning the graphene doping condition are frequently utilized to realize a high carrier density in graphene, more information pertaining to the doping condition of graphene by electrolyte gating is continuously required. Here, variations of the doping of graphene with the application of electrolyte gate voltage are studied. In detail, upon employing an electrolyte gating, it is verified that the Fermi level can be tuned to more than 288 meV and that recovery to the initial doping condition typically requires more than 24 hours. Furthermore, this doping variation can be adjusted by applying positive and negative electrolyte gate voltages immediately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Kim, Z. Yue, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J-H. Ahn, P. Kim, J-Y. Choi and B. H. Hong, Nature 457, 706 (2009).

    Article  ADS  Google Scholar 

  2. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and L. R. S. Ruoff, Science 324, 1312 (2009).

    Article  ADS  Google Scholar 

  3. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim and Y. I. Song, Nat. Nanotechnol. 5, 574 (2010).

    Article  ADS  Google Scholar 

  4. S. Bae, S. J. Kim, D. Shin, J-H. Ahn and B. H. Hong, Phys. Scr. T146, 014024 (2012).

    Article  ADS  Google Scholar 

  5. X. Zhang, B. R. S. Rajaraman, H. Liu and S. Ramakrishna, RSC Adv. 4, 28987 (2014).

    Article  Google Scholar 

  6. J. H. Kim, M. M. Haidari, J. S. Choi, H. Kim, Y-J. Yu and J. Park, J. Korean Phys. Soc. 72, 1045 (2018).

    Article  ADS  Google Scholar 

  7. Y. Oh and J. Eom, J. Korean Phys. Soc. 59, 124 (2011).

    Article  Google Scholar 

  8. J. S. Choi, H. Choi, K-C. Kim, H. Y. Jeong, Y-J. Yu, J. T. Kim, J. S. Kim and C. G. Choi, Sci. Rep. 6, 24525 (2016).

    Article  ADS  Google Scholar 

  9. K. L. Kim, W. Lee, S. K. Hwang, S. H. Joo, S. M. Cho, G. Song, S. H. Cho, B. Jeong, I. Hwang, J-H. Ahn, Y-J. Yu, T. J. Shin, S. K. Kwak, S. J. Kang and C. Park, Nano Lett. 16, 334 (2016).

    Article  ADS  Google Scholar 

  10. W. Kim, K. Yoo, E. K. Seo, S. J. Kim and C. Hwang, J. Korean Phys. Soc. 59, 71 (2011).

    Article  Google Scholar 

  11. D. K. Efetov, P. Maher, S. Glinskis and P. Kim, Phys. Rev. B. 84, 161412 (2011).

    Article  ADS  Google Scholar 

  12. Y. Ohno, K. Maehashi, Y. Yamashiro and K. Matsumoto, Nano Lett. 9, 3318 (2009).

    Article  ADS  Google Scholar 

  13. F. Chen, Q. Qing, J. Xia, J. Li and N. Tao, J. Am. Chem. Soc. 131, 9908 (2009).

    Article  Google Scholar 

  14. S-K. Lee, S. M. H. Kabir, B. K. Sharma, B. J. Kim, J. H. Cho and J-H. Ahn, Nanotechno. 25, 014002 (2014).

    Article  ADS  Google Scholar 

  15. B. J. Kim, E. Hwang, M. S. Kang and J. H. Cho, Adv. Mater. 27, 5875 (2015).

    Article  Google Scholar 

  16. K. Xu, H. Lu, E. W. Kinder, A. Seabaugh and S. K. Fullerton-Shirey, ASC Nano 11, 5453 (2017).

    Article  Google Scholar 

  17. Q. Zhang, F. Leonardi, S. Caslini, L. Tamino and M. Mas-Torrent, Sci. Rep. 6, 39623 (2016).

    Article  ADS  Google Scholar 

  18. H. Du, X. Lin, Z. Xu and D. Chu, J. Mater. Sci. 50, 5641 (2015).

    Article  ADS  Google Scholar 

  19. P. Salvo, B. Melai, N. Calisi, C. Paoletti, F. Bellagambi, A. Kirchhain, M. G. Trivella, R. Fuoco and F. D. Francesco, Sens. Actuators B - Chem. 256, 976 (2018).

    Article  Google Scholar 

  20. Y-J. Yu, Appl. Sci. Converg. Technol. 27, 35 (2018).

    Google Scholar 

  21. B. R. Goldsmith, J. G. Coroneus, V. R. Khalap, A. A. Kane, G. A. Weiss and P. G. Collins, Science 315, 77 (2007).

    Article  ADS  Google Scholar 

  22. S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y-J. Yu, P. Kim, C. Nucklls and K. L. Shepard, Nature Nanotechnol. 6, 126 (2011).

    Article  ADS  Google Scholar 

  23. L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus and G. W. Flynn, Nano lett. 8, 1965 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Jun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, YJ. Electrochemical Doping of Graphene with H2SO4 Electrolyte. J. Korean Phys. Soc. 74, 132–135 (2019). https://doi.org/10.3938/jkps.74.132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.74.132

Keywords

Navigation