Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 132–135 | Cite as

Electrochemical Doping of Graphene with H2SO4 Electrolyte

  • Young-Jun YuEmail author
Article
  • 14 Downloads

Abstract

Because graphene has been studied for applications to both flexible and transparent electrodes, conductivity improvements by tuning the doping condition represent a significant strategy. Although electrolyte gating avenues for tuning the graphene doping condition are frequently utilized to realize a high carrier density in graphene, more information pertaining to the doping condition of graphene by electrolyte gating is continuously required. Here, variations of the doping of graphene with the application of electrolyte gate voltage are studied. In detail, upon employing an electrolyte gating, it is verified that the Fermi level can be tuned to more than 288 meV and that recovery to the initial doping condition typically requires more than 24 hours. Furthermore, this doping variation can be adjusted by applying positive and negative electrolyte gate voltages immediately.

Keywords

Graphene Electrolyte Carrier density Doping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. S. Kim, Z. Yue, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J-H. Ahn, P. Kim, J-Y. Choi and B. H. Hong, Nature 457, 706 (2009).ADSCrossRefGoogle Scholar
  2. [2]
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and L. R. S. Ruoff, Science 324, 1312 (2009).ADSCrossRefGoogle Scholar
  3. [3]
    S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim and Y. I. Song, Nat. Nanotechnol. 5, 574 (2010).ADSCrossRefGoogle Scholar
  4. [4]
    S. Bae, S. J. Kim, D. Shin, J-H. Ahn and B. H. Hong, Phys. Scr. T146, 014024 (2012).ADSCrossRefGoogle Scholar
  5. [5]
    X. Zhang, B. R. S. Rajaraman, H. Liu and S. Ramakrishna, RSC Adv. 4, 28987 (2014).CrossRefGoogle Scholar
  6. [6]
    J. H. Kim, M. M. Haidari, J. S. Choi, H. Kim, Y-J. Yu and J. Park, J. Korean Phys. Soc. 72, 1045 (2018).ADSCrossRefGoogle Scholar
  7. [7]
    Y. Oh and J. Eom, J. Korean Phys. Soc. 59, 124 (2011).CrossRefGoogle Scholar
  8. [8]
    J. S. Choi, H. Choi, K-C. Kim, H. Y. Jeong, Y-J. Yu, J. T. Kim, J. S. Kim and C. G. Choi, Sci. Rep. 6, 24525 (2016).ADSCrossRefGoogle Scholar
  9. [9]
    K. L. Kim, W. Lee, S. K. Hwang, S. H. Joo, S. M. Cho, G. Song, S. H. Cho, B. Jeong, I. Hwang, J-H. Ahn, Y-J. Yu, T. J. Shin, S. K. Kwak, S. J. Kang and C. Park, Nano Lett. 16, 334 (2016).ADSCrossRefGoogle Scholar
  10. [10]
    W. Kim, K. Yoo, E. K. Seo, S. J. Kim and C. Hwang, J. Korean Phys. Soc. 59, 71 (2011).CrossRefGoogle Scholar
  11. [11]
    D. K. Efetov, P. Maher, S. Glinskis and P. Kim, Phys. Rev. B. 84, 161412 (2011).ADSCrossRefGoogle Scholar
  12. [12]
    Y. Ohno, K. Maehashi, Y. Yamashiro and K. Matsumoto, Nano Lett. 9, 3318 (2009).ADSCrossRefGoogle Scholar
  13. [13]
    F. Chen, Q. Qing, J. Xia, J. Li and N. Tao, J. Am. Chem. Soc. 131, 9908 (2009).CrossRefGoogle Scholar
  14. [14]
    S-K. Lee, S. M. H. Kabir, B. K. Sharma, B. J. Kim, J. H. Cho and J-H. Ahn, Nanotechno. 25, 014002 (2014).ADSCrossRefGoogle Scholar
  15. [15]
    B. J. Kim, E. Hwang, M. S. Kang and J. H. Cho, Adv. Mater. 27, 5875 (2015).CrossRefGoogle Scholar
  16. [16]
    K. Xu, H. Lu, E. W. Kinder, A. Seabaugh and S. K. Fullerton-Shirey, ASC Nano 11, 5453 (2017).CrossRefGoogle Scholar
  17. [17]
    Q. Zhang, F. Leonardi, S. Caslini, L. Tamino and M. Mas-Torrent, Sci. Rep. 6, 39623 (2016).ADSCrossRefGoogle Scholar
  18. [18]
    H. Du, X. Lin, Z. Xu and D. Chu, J. Mater. Sci. 50, 5641 (2015).ADSCrossRefGoogle Scholar
  19. [19]
    P. Salvo, B. Melai, N. Calisi, C. Paoletti, F. Bellagambi, A. Kirchhain, M. G. Trivella, R. Fuoco and F. D. Francesco, Sens. Actuators B - Chem. 256, 976 (2018).CrossRefGoogle Scholar
  20. [20]
    Y-J. Yu, Appl. Sci. Converg. Technol. 27, 35 (2018).Google Scholar
  21. [21]
    B. R. Goldsmith, J. G. Coroneus, V. R. Khalap, A. A. Kane, G. A. Weiss and P. G. Collins, Science 315, 77 (2007).ADSCrossRefGoogle Scholar
  22. [22]
    S. Sorgenfrei, C. Chiu, R. L. Gonzalez, Y-J. Yu, P. Kim, C. Nucklls and K. L. Shepard, Nature Nanotechnol. 6, 126 (2011).ADSCrossRefGoogle Scholar
  23. [23]
    L. Liu, S. Ryu, M. R. Tomasik, E. Stolyarova, N. Jung, M. S. Hybertsen, M. L. Steigerwald, L. E. Brus and G. W. Flynn, Nano lett. 8, 1965 (2008).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsChungnam National UniversityDaejeonKorea

Personalised recommendations