Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 127–131 | Cite as

Antireflection Coatings with Graded Refractive Index of Indium Tin Oxide for Si-based Solar Cells

  • Gyujin Oh
  • Eun Kyu KimEmail author


The glancing angle deposition (GLAD) technique for fabricating an antireflection (AR) structure with graded refractive index was applied to silicon substrate by using indium tin oxide (ITO) combining the sputtering method with the evaporation method. In spite of the very limited refractive index profile of ITO compared to that of the silicon substrate, the designed AR coatings at wavelengths from near infrared to near ultraviolet showed a reflectance of only 5.31% at an incident angle of 30° while the transmittance of the ITO AR layer showed a sharp decrease near a wavelength of 400 nm. From these analyses, ITO multilayered AR coatings fabricated by using the GLAD method should improve the performance of an optical device after post-annealing at a low temperature of 160°C. When the ITO AR coatings were applied to actual silicon solar cells, it appears that a non-grid electrode cell with ITO AR coatings is possible compared with insulator AR coatings with metal grid electrodes


Indium tin oxide Glancing angle deposition Anti-reflection coating Solar cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. Robbie and M. Brett, J. Vac. Sci. Technol. A 15, 1460 (1997).ADSCrossRefGoogle Scholar
  2. [2]
    K. Robbie, J. Sit and M. Brett, J. Vac. Sci. Technol. B 16, 1115 (1998).CrossRefGoogle Scholar
  3. [3]
    C. K. Hwangbo, Y. J. Park, K. M. A. Sobahan and J. J. Kim, J. Korean Phys. Soc. 55, 2634 (2009).CrossRefGoogle Scholar
  4. [4]
    J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. H. Crawford, J. Cho, H. Kim and C. Sone, Adv. Mater. 20, 801 (2008).CrossRefGoogle Scholar
  5. [5]
    S. Bruynooghe, D. Tonova, M. Sundermann, T. Koch and U. Schulz, Surf. Coat. Technol. 267, 40 (2015).CrossRefGoogle Scholar
  6. [6]
    P. Salazar, V. Rico, R. Rodríguez-Amaro, J. P. Espinós and A. R. Gonzälez-Elipe, Electrochem. Acta 169, 195 (2015).CrossRefGoogle Scholar
  7. [7]
    C. Chang, P. Yu and C. Yang, Appl. Phys. Lett. 94, 051114 (2009).ADSCrossRefGoogle Scholar
  8. [8]
    J-Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S-Y. Lin, W. Liu and J. A. Smart, Nat. Photonics 1, 176 (2007).ADSCrossRefGoogle Scholar
  9. [9]
    S. K. Dhungel, J. Yoo, K. Kim, S. Jung, S. Ghosh and J. Yi, J. Korean Phys. Soc. 49, 885 (2006)Google Scholar
  10. [10]
    I. Lee, W. J. Lee and J. Yi, J. Korean Phys. Soc. 39, 57 (2001).Google Scholar
  11. [11]
    J. Zhao and M. Green, IEEE Trans. Electron Devices 38, 1925 (1991).ADSCrossRefGoogle Scholar
  12. [12]
    Q. Liu, J. Dai, Y. Zhang, H. Li, B. Li, Z. Liu and W. Wang, J. Alloys Compd. 655, 389 (2016).CrossRefGoogle Scholar
  13. [13]
    F. M. Simanjuntak, D. Panda, T-L. Tsai, C-A. Lin, K-H. Wei and T-Y. Tseng, J. Mater. Sci. 50, 6961 (2015).ADSCrossRefGoogle Scholar
  14. [14]
    L. Barraud, Z. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. De Wolf and C. Ballif, Sol. Energy Mater. Sol. Cells 115, 151 (2013).CrossRefGoogle Scholar
  15. [15]
    S. J. Jang, Y. M. Song, J. S. Yu, C. I. Yeo and Y. T. Lee, Opt. Lett. 36, 253 (2011).ADSCrossRefGoogle Scholar
  16. [16]
    M. M. Hawkeye and M. J. Brett, J. Vac. Sci. Technol. A 25, 1317 (2007).CrossRefGoogle Scholar
  17. [17]
    R. Tait, T. Smy and M. Brett, Thin Solid Films 226, 196 (1993).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Physics and Research Institute for Convergence of Basic SciencesHanyang UniversitySeoulKorea

Personalised recommendations