Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 12, pp 1160–1165 | Cite as

Growth of AlN Epilayers on Sapphire Substrates by Using the Mixed-Source Hydride Vapor Phase Epitaxy Method

  • Injun Jeon
  • Gang Seok Lee
  • Kyoung Hwa Kim
  • Hyung Soo AhnEmail author
  • Min Yang
  • Sam Nyung Yi
  • Hunsoo Jeon
  • Chae Ryong Cho
  • Suck-Whan KimEmail author
Article
  • 16 Downloads

Abstract

AIN epilayers of different thicknesses were grown directly on sapphire substrates without a buffer layer by using a mixed (Al+Ga) source containing 95 at% Al and a mixed-source hydride vapor phase epitaxy (HVPE) method at a temperature of around 1120°C. The grown epilayers consisted of an AlN alloy in the upper region and an AlGaN alloy in the nucleation region just above the sapphire substrate. The upper part of the epilayer gradually transformed from AlGaN into AlN owing to a decrease in the Ga content of the AlGaN alloy grown on the sapphire substrate with increasing growth thickness. The role of Ga in the mixed (Al+Ga) source in the growth of the epilayer directly on the sapphire substrate and the dependence of the growth mechanism of the epilayer with varying Ga contents on the growth thickness were investigated. We found that Ga in the mixed (Al+Ga) source only acted as an activation material that generated gaseous precursors rather than directly contributing to the growth of the epilayers. The mixed-source HVPE method appears suitable for the growth of thick AIN epilayers.

Keywords

AlN AlGaN Mixed-source HVPE Epitaxy Wide-bandgap semiconductor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A3B03035999).

References

  1. [1]
    J. L. Hudgins, J. Electron. Mater. 32, 471 (2003).ADSCrossRefGoogle Scholar
  2. [2]
    J. R. LaRoche et al., Solid State Electron. 48, 193 (2004).ADSCrossRefGoogle Scholar
  3. [3]
    M. A. Mastro et al., Solid State Electron. 47, 1075 (2003).ADSCrossRefGoogle Scholar
  4. [4]
    Y. Tomm, J. M. Ko, A. Yoshikawa and T. Fukuda, Sol. Energy Mater. Sol. Cells 66, 369 (2001).CrossRefGoogle Scholar
  5. [5]
    S. Kitagawa, H. Miyake and K. Hiramatsu, Jpn. J. Appl. Phys. 53, 05FL03 (2014).Google Scholar
  6. [6]
    J. R Zhang et al., Appl. Phys. Lett. 83, 3456 (2003).ADSCrossRefGoogle Scholar
  7. [7]
    H. Jeon et al., Jpn. J. Appl. Phys. 51, 01AG01 (2012).Google Scholar
  8. [8]
    A. A. Allerman et al., J. Cryst. Growth 272, 227 (2004).ADSCrossRefGoogle Scholar
  9. [9]
    A. Yasan et al., Appl. Phys. Lett. 83, 4701 (2003).ADSCrossRefGoogle Scholar
  10. [10]
    V. Adivarahan et ai., Appl. Phys. Lett. 81, 3666 (2002).ADSCrossRefGoogle Scholar
  11. [11]
    P Perlin et al., Appl. Phys. Lett. 69, 1680 (1996).ADSCrossRefGoogle Scholar
  12. [12]
    S. R. Lee et al., Appl. Phys. Lett. 74, 3344 (1999).ADSCrossRefGoogle Scholar
  13. [13]
    W. Shan et al, J. Appl. Phys. 85, 8505 (1999).ADSCrossRefGoogle Scholar
  14. [14]
    B. S. Kang, H. T. Wang, F. Ren and S. J. Pearton, J. Appl. Phys. 104, 031101 (2008).Google Scholar
  15. [15]
    Q. Chen et al., Appl. Phys. Lett. 69, 794 (1996).ADSCrossRefGoogle Scholar
  16. [16]
    S. Yoshida and J. Suzuki, J. Appl. Phys. 84, 2940 (1998).ADSCrossRefGoogle Scholar
  17. [17]
    O. Aktas et al, Appl. Phys. Lett. 69, 3872 (1996).ADSCrossRefGoogle Scholar
  18. [18]
    J. Li, K. B. Nam, J. Y. Lin and H. X. Jiang, Appl. Phys. Lett. 79, 3245 (2010).ADSCrossRefGoogle Scholar
  19. [19]
    M. L. Nakarmi et al., Appl. Phys. Lett. 85, 3769 (2004).ADSCrossRefGoogle Scholar
  20. [20]
    R. Rodriguez-Clemente et al., J. Cryst. Growth 133, 59 (1993).ADSCrossRefGoogle Scholar
  21. [21]
    K. Hiramatsu et al, J. Cryst. Growth 115, 628 (1991).ADSCrossRefGoogle Scholar
  22. [22]
    Y. Kumagai, T. Yamane and A. Koukitu, J. Cryst. Growth 281, 62 (2005).ADSCrossRefGoogle Scholar
  23. [23]
    A. Dadgar et al, J. Cryst. Growth 297, 306 (2006).ADSCrossRefGoogle Scholar
  24. [24]
    Y. Kumagai, T. Nagashima and A. Koukitu, Jpn. J. Appl. Phys. 46, L389 (2007).Google Scholar
  25. [25]
    G. S. Lee et al, Jpn. J. Appl. Phys. 55, 05FC02 (2016).Google Scholar
  26. [26]
    D. O. Flamini, S. [au]_[26] B. Saidman and J. B. Bessone, Corros. Sci. 48, 1413 (2006).CrossRefGoogle Scholar
  27. [27]
    C. D. S. Tuck, J. A. Hunter and G. M. Scamans, J. Electrochem. Soc. 134, 2970 (1987).CrossRefGoogle Scholar
  28. [28]
    B. T. Trana et al., J. Cryst. Growth 468, 225 (2017).ADSCrossRefGoogle Scholar
  29. [29]
    Y. Kumagai et al., Phys. Status Solidi C 0/7, 2498 (2003).Google Scholar
  30. [30]
    R. C. Hugo and R. G. Hoagland, Acta Mater. 48, 1949 (2000).CrossRefGoogle Scholar
  31. [31]
    W. Ludwig and D. Bellet, Mater. Sci. Eng. A 281, 198 (2000).CrossRefGoogle Scholar
  32. [32]
    J. Hagstrom, O. V. Mishin and B. Hutchinson, Scr. Mater. 49, 1035 (2003).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Injun Jeon
    • 1
  • Gang Seok Lee
    • 2
  • Kyoung Hwa Kim
    • 2
  • Hyung Soo Ahn
    • 2
    Email author
  • Min Yang
    • 2
  • Sam Nyung Yi
    • 2
  • Hunsoo Jeon
    • 3
  • Chae Ryong Cho
    • 4
  • Suck-Whan Kim
    • 5
    Email author
  1. 1.Department of Nano Fusion TechnologyPusan National UniversityBusanKorea
  2. 2.Department of Electronic Materials EngineeringKorea Maritime and Ocean UniversityBusanKorea
  3. 3.Power Semiconductor Commercialization CenterBusanKorea
  4. 4.Department of Nanoenergy Engineering and Department of Nano Fusion TechnologyPusan National UniversityBusanKorea
  5. 5.Department of PhysicsAndong National UniversityAndongKorea

Personalised recommendations