Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 2, pp 111–115 | Cite as

A Method to Enhance the Electric Field Intensity in a Gold Sub-microhole by Adding Copper Microspheres

  • Ha Young Lee
  • Min Sub Kwak
  • Kyung-Won Lim
  • Hyung Soo Ahn
  • Sam Nyung YiEmail author
Article
  • 3 Downloads

Abstract

We report a method to enhance the electric field intensity in a gold sub-microhole structure. The local electric field distribution was simulated using a finite-difference time-domain (FDTD) solution for the three-dimensional reversed trapezoidal hole structure with and without microspheres and analyzed the transmittance, reflectance and absorptance spectra. Among various sizes for one microsphere, the strongest local electric field occurred for a microsphere with a size of 1 μm. Furthermore, the local electric field intensity was increased when two and three microspheres of 1 μm in size were added.

Keywords

Plasmon Sub-microhole Cu microsphere FDTD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Törmä and W. L. Barnes, Rep. Prog. Phys. 78, 013901 (2015).ADSCrossRefGoogle Scholar
  2. [2]
    M. Singh, M. Holzinger, M. Tabrizian, S. Winters, N. C. Berner, S. Cosnier and G. S. Duesberg, J. Am. Chem. Soc. 8, 2800 (2015).CrossRefGoogle Scholar
  3. [3]
    Z. Yi, M. Liu, J. Luo, Y. Zhao, W. Zhang, Y. Yi, Y. Yi, T. Duan, C. Wang and Y. Tang, Opt. Commun. 390, 1 (2017).ADSCrossRefGoogle Scholar
  4. [4]
    J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White and M. L. Brongersma, Nat. Mater. 9, 193 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen and W. Lu, Small 11, 2392 (2015).CrossRefGoogle Scholar
  6. [6]
    L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski and T. Ellenbogen, Phys. Rev. Lett. 118, 243904 (2017).ADSCrossRefGoogle Scholar
  7. [7]
    H. R. Moon, D. Lim and M. P. Suh, Chem. Soc. Rev. 42, 1807 (2013).CrossRefGoogle Scholar
  8. [8]
    Zh. M. Wang, B. L. Liang, K. A. Sablon and G. J. Salamo, Appl. Phys. Lett. 90, 113120 (2007).ADSCrossRefGoogle Scholar
  9. [9]
    F. Tam, C. Moran and N. Halas, J. Phys. Chem. B 108, 17290 (2004).CrossRefGoogle Scholar
  10. [10]
    Y. Cho, B. Cho, Y. Kim, J. Lee, E. Kim, T. T. T. Nguyen, J. H. Lee, S. Yoon, D. Kim, J. Choi and D. Kim, ACS Appl. Mater. Interfaces 9, 6314 (2017).CrossRefGoogle Scholar
  11. [11]
    C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schatz, M. Mrksich and R. P. V. Duyne, J. Am. Chem. Soc. 126, 12669 (2004).CrossRefGoogle Scholar
  12. [12]
    A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaploğlu and H. Altug, Appl. Phys. Lett. 101, 121113 (2012).ADSCrossRefGoogle Scholar
  13. [13]
    S. Unser, I. Bruzas, J. He and L. Sagle, Sensors 15, 15684 (2015).CrossRefGoogle Scholar
  14. [14]
    Y. Ekşioğlu, A. E. Cetin and J. Petráĝek, Plasmonics 11, 851 (2016).CrossRefGoogle Scholar
  15. [15]
    A. E. Cetin, Int. Nano Lett. 5, 21 (2015).CrossRefGoogle Scholar
  16. [16]
    K. B. Crozier, A. Sundaramurthy, G. S. Kino and C. F. Quate, J. Appl. Phys. 94, 4632 (2003).ADSCrossRefGoogle Scholar
  17. [17]
    C. R. Yonzon, E. Jeoung, S. Zou, G. C. Schartz, M. Mrksich and R. P. V. Duyne, J. Am. Chem. Soc. 126, 12669 (2004).CrossRefGoogle Scholar
  18. [18]
    V. V. R. Sai, T. Kundu and S. Mukherji, Biosensors and Bioelectronics 24, 2804 (2009).CrossRefGoogle Scholar
  19. [19]
    J. M Montgomery, T. Lee and S. K Gray, J. Phys.: Condens. Matter 20, 323201 (2008).Google Scholar
  20. [20]
    P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino and W. E. Moerner, Phys. Rev. Lett. 94, 017402 (2005).ADSCrossRefGoogle Scholar
  21. [21]
    T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R, Hillenbrand, J, Aizpurua and F. J, G, de Abajo, J, Phys, Chem, C 111, 1207 (2007).CrossRefGoogle Scholar
  22. [22]
    K. L. van der Molena, F. B. Segerink, N. F. van Hulst and L. Kuipers, Appl. Phys. Lett. 85, 4316 (2004).ADSCrossRefGoogle Scholar
  23. [23]
    S. Lal, S. Link and N. J. Halas, Nat. photonics 1, 641 (2007).ADSCrossRefGoogle Scholar
  24. [24]
    H. H. Nguyen, J. Park, S. Kang and M. Kim, Sensor 15, 10481 (2015).CrossRefGoogle Scholar
  25. [25]
    A. G. Brolo, R. Gordon, B. Leathem and K. L. Kavanagh, Langmuir 20, 4813 (2004).CrossRefGoogle Scholar
  26. [26]
    L. Baldassarre, E. Sakat, J. Frigerio, A. Samarelli, K. Gallacher, E. Calandrini, G. Isella, D. J. Paul, M. Ortolan and P. Biagioni, Nano Lett. 15, 7225 (2015).ADSCrossRefGoogle Scholar
  27. [27]
    H. Chen, C. Hong, C. Kung, C. Mou, K. C-W. Wu and K. Ho, J. Power Sources 288, 221 (2015).ADSCrossRefGoogle Scholar
  28. [28]
    B. Liedberg, C. Nylander and I. Lundstrom, Sens Actuators 4, 299 (1983).CrossRefGoogle Scholar
  29. [29]
    M. A. Seo, J. H. Kang, H. S. Kim, J. H. Cho, J. Choi, Y. M. Jhon, S. Lee, J. H. Kim, T. Lee, Q-H. Park and C. Kim, Sci. Rep. 5, 10280 (2015).ADSCrossRefGoogle Scholar
  30. [30]
    A. J. Haes and R. P. V. Duyne, Anal Bioanal. Chem. 379, 920 (2004).CrossRefGoogle Scholar
  31. [31]
    M. Najiminaini, F. Vasefi, B. Kaminska and J. J. L. Carson, Appl. Phys. Lett. 100, 043105 (2012).ADSCrossRefGoogle Scholar
  32. [32]
    C. Genet and T. W. Ebbesen, Nature Rev. 445, 39 (2007).ADSGoogle Scholar
  33. [33]
    Y. Bahk, B. Kang, Y. S. Kim, J. Kim, W. T. Kim, T. Y. Kim, T. Kang, J. Rhie, S. Han, C. Park, F. Rotermund and D. Kim, Phys. Rev. Lett. 115, 125501 (2015).ADSCrossRefGoogle Scholar
  34. [34]
    M. Kim, H. Sim, S. J. Yoon, S. Gong, C. W. Ahn, Y. Cho and Y. Lee, Nano Lett. 15, 4102 (2015).ADSCrossRefGoogle Scholar
  35. [35]
    A. Lesuffleur, H. Im, N. C. Lindquist and S. Oh, Appl. Phys. Lett. 90, 243110 (2007).ADSCrossRefGoogle Scholar
  36. [36]
    J. Parsons, E. Hendry, C. P. Burrows, B. Auquie, J. R. Sambles and W. L. Barnes, Phys. Rev. B 79, 073412 (2009).ADSCrossRefGoogle Scholar
  37. [37]
    T. Sannomiya, O. Scholder, K. Jefimovs, C. Hafner and A. B. Dahlin, Small 7, 1653 (2011).CrossRefGoogle Scholar
  38. [38]
    Z. Yi, M. Liu, J. Luo, X. Xu, W. Zhang, Y. Yi, T. Duan, C. Wang and Y. Tang, Plasmonics 12, 1929 (2017).CrossRefGoogle Scholar
  39. [39]
    H. Y. Lee, J. Yeon, M. S. Kwak, K. Lim, H. S. Ahn, J. Ahn, S. N. Nyung and J. Ryu, New Phys.: Sae Mulli 68, 8 (2018).Google Scholar
  40. [40]
    Q. G. Du, W. Yue, Z. Wang, W. T. Lau, H. Ren and E. Li, Opt. Express 24, 4680 (2016).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  • Ha Young Lee
    • 1
  • Min Sub Kwak
    • 1
  • Kyung-Won Lim
    • 1
  • Hyung Soo Ahn
    • 1
  • Sam Nyung Yi
    • 1
    Email author
  1. 1.Department of Electronic Materials EngineeringKorea Maritime and Ocean UniversityBusanKorea

Personalised recommendations