Advertisement

Journal of the Korean Physical Society

, Volume 74, Issue 1, pp 1–11 | Cite as

Holographic Dark Energy and Quantum Entanglement

  • Jae-Weon Lee
  • Hyeong-Chan Kim
  • Jungjai Lee
Article
  • 1 Downloads

Abstract

In this paper, we briefly review the holographic dark energy model and introduce the idea that dark energy is a kind of thermal energy related to the quantum entanglement of the vacuum across a cosmic future event horizon. The holographic dark energy model comes from a theoretical attempt to apply the holographic principle to the dark energy problem and follows the idea that the short distance cut-off or ultraviolet (UV) cut-off is related to the long distance cut-off or infrared (IR) cut-off. The IR cut-off relevant to dark energy is the size of the future event horizon. This model gives a holographic dark energy comparable to the observational data. Though this model is in good agreement with observational data, some problems (non-locality, circular logic, causality problem, etc.) exist due to the use of the future event horizon as a present IR cut-off. These problems of the holographic dark energy model are considerably resolved using action principle and equations of motion. Finally, we discuss the relation between quantum entanglement and dark energy which is connected to the more fundamental relation between entanglement and gravity.

Keywords

Holographic dark energy Quantum entanglement Dark energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. G. Riess et al., Astron. J. 116, 1009 (1998).ADSCrossRefGoogle Scholar
  2. [2]
    S. Perlmutter et al., Astrophys. J. 517, 565 (1999).ADSCrossRefGoogle Scholar
  3. [3]
    R. R. Caldwell, R. Dave and P. J. Steinhardt, Phys. Rev. Lett. 80, 1582 (1998).ADSCrossRefGoogle Scholar
  4. [4]
    I. Zlatev, L. M. Wang and P. J. Steinhardt, Phys. Rev. Lett. 82, 896 (1999).ADSCrossRefGoogle Scholar
  5. [5]
    P. J. Steinhardt, L. M. Wang and I. Zlatev, Phys. Rev. D 59, 123504 (1999).ADSCrossRefGoogle Scholar
  6. [6]
    T. Chiba, T. Okabe and M. Yamaguchi, Phys. Rev. D 62, 023511 (2000).ADSCrossRefGoogle Scholar
  7. [7]
    C. Armendariz-Picon, V. Mukhanov and P. J. Steinhardt, Phys. Rev. Lett. 85, 4438 (2000).ADSCrossRefGoogle Scholar
  8. [8]
    C. Armendariz-Picon, V. Mukhanov and P. J. Steinhardt, Phys. Rev. D 63, 103510 (2001).ADSCrossRefGoogle Scholar
  9. [9]
    C. Armendariz-Picon, T. Damour and V. Mukhanov, Phys. Lett. B 458, 209 (1999).ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    J. Garriga and V. Mukhanov, Phys. Lett. B 458, 219 (1999).ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    R. R. Caldwell, Phys. Lett. B 545, 23 (2002).ADSCrossRefGoogle Scholar
  12. [12]
    A. Kamenshchik, U. Moschella and V. Pasquier, Phys. Lett. B 511, 265 (2001).ADSCrossRefGoogle Scholar
  13. [13]
    T. Padmanabhan, Phys. Rev. D 66, 021301 (2002).ADSCrossRefGoogle Scholar
  14. [14]
    J. S. Bagla, H. K. Jassal and T. Padmanabhan, Phys. Rev. D 67, 063504 (2003).ADSCrossRefGoogle Scholar
  15. [15]
    L. R. W. Abramo and F. Finelli, Phys. Lett. B 575, 165 (2003).ADSCrossRefGoogle Scholar
  16. [16]
    J. M. Aguirregabiria and R. Lazkoz, Phys. Rev. D 69, 123502 (2004).ADSMathSciNetCrossRefGoogle Scholar
  17. [17]
    Z. K. Guo and Y. Z. Zhang, JCAP 0408, 010 (2004).ADSCrossRefGoogle Scholar
  18. [18]
    E. J. Copeland, M. R. Garousi, M. Sami and S. Tsujikawa, Phys. Rev. D 71, 043003 (2005).ADSCrossRefGoogle Scholar
  19. [19]
    P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).ADSCrossRefGoogle Scholar
  20. [20]
    S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).ADSCrossRefGoogle Scholar
  21. [21]
    T. Padmanabhan, Phys. Rep. 380, 235 (2003).ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006).ADSCrossRefGoogle Scholar
  23. [23]
    J. Frieman, M. Turner and D. Huterer, Ann. Rev. Astron. Astrophys. 46, 385 (2008).ADSCrossRefGoogle Scholar
  24. [24]
    R. R. Caldwell and M. Kamionkowski, Ann. Rev. Nucl. Part. Sci. 59, 397 (2009).ADSCrossRefGoogle Scholar
  25. [25]
    A. Silvestri and M. Trodden, Rept. Prog. Phys. 72, 096901 (2009).ADSCrossRefGoogle Scholar
  26. [26]
    M. Li, X-D. Li, S. Wang and Y. Wang, Commun. Theor. Phys. 56, 525 (2011).ADSCrossRefGoogle Scholar
  27. [27]
    K. Bamba, S. Capozziello, S. Nojiri and S. D. Odintsov, Astrophys. Space Sci. 342, 155 (2012).ADSCrossRefGoogle Scholar
  28. [28]
    A. G. Cohen, D. B. Kaplan and A. E. Nelson, Phys. Rev. Lett. 82, 4971 (1999).ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).ADSCrossRefGoogle Scholar
  31. [31]
    S. Minwalla, M. V. Raamsdonk and N. Seiberg, JHEP 0002, 020 (2000).ADSCrossRefGoogle Scholar
  32. [32]
    H. S. Yang, Int. J. Mod. Phys. A 24, 4473 (2009)ADSCrossRefGoogle Scholar
  33. 32a.
    H. S. Yang, J. Mod. Phys. D 25, 1645010 (2016).ADSCrossRefGoogle Scholar
  34. [33]
    J. Lee and H. S. Yang, J. Korean Phys. Soc. 65, 1754 (2014).ADSCrossRefGoogle Scholar
  35. [34]
    M. Li, Phys. Lett. B 603, 1 (2004).ADSMathSciNetCrossRefGoogle Scholar
  36. [35]
    M. Li, X. D. Li, S. Wang and X. Zhang, JCAP 0906, 036 (2009).ADSCrossRefGoogle Scholar
  37. [36]
    S. Wang, Y. Wang and Miao Li, Phys. Rept. 696, 1 (2017).ADSCrossRefGoogle Scholar
  38. [37]
    M. Li and R-X. Miao, A New Model of Holographic Dark Energy with Action Principle, arXiv: 1210.0966.Google Scholar
  39. [38]
    H-C. Kim, J. W. Lee and J. Lee, Europhys. Lett. 102, 29001 (2013).ADSCrossRefGoogle Scholar
  40. [39]
    R. Muller and C. O. Lousto, Phys. Rev. D 52, 4512 (1995).ADSCrossRefGoogle Scholar
  41. [40]
    M. Li, X-D. Li, C. Lin and Y. Wang, Commun. Theor. Phys. 51, 181 (2009).ADSCrossRefGoogle Scholar
  42. [41]
    H. B. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).ADSCrossRefGoogle Scholar
  43. [42]
    M. V. Fischetti, J. B. Hartle and B. L. Hu, Phys. Rev. D 20, 1757 (1979).ADSMathSciNetCrossRefGoogle Scholar
  44. [43]
    J. B. Hartle and B. L. Hu, Phys. Rev. D 20, 1772 (1979).ADSMathSciNetCrossRefGoogle Scholar
  45. [44]
    J. B. Hartle and B. L. Hu, Phys. Rev. D 21, 2756 (1980).ADSMathSciNetCrossRefGoogle Scholar
  46. [45]
    M. Li, R-X. Miao and Y. Pang, Phys. Lett. B 689, 55 (2010).ADSCrossRefGoogle Scholar
  47. [46]
    M. Li, R-X. Miao and Y. Pang, Opt. Express 18, 9026 (2010).ADSCrossRefGoogle Scholar
  48. [47]
    E. P. Verlinde, JHEP 04, 029 (2011).ADSCrossRefGoogle Scholar
  49. [48]
    M. Li and Y. Wang, Phys. Lett. B 687, 243 (2010).ADSCrossRefGoogle Scholar
  50. [49]
    Jae-Weon Lee, Hyeong-Chan Kim and J. Lee, J. Korean Phys. Soc. 66, 1025 (2015).ADSCrossRefGoogle Scholar
  51. [50]
    J-W. Lee, J. Lee, H-C. Kim, JCAP 0708, 005 (2007).ADSCrossRefGoogle Scholar
  52. [51]
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2001).zbMATHGoogle Scholar
  53. [52]
    T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110 (2002).ADSMathSciNetCrossRefGoogle Scholar
  54. [53]
    M. Van Raamsdonk, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015) (Boulder, CO, USA, June 1 - 26, 2015), p. 297.Google Scholar
  55. [54]
    R. Brustein, Phys. Rev. Lett. 84, 2072 (2000).ADSMathSciNetCrossRefGoogle Scholar
  56. [55]
    T. Takayanagi, Class. Quant. Grav. 29, 153001 (2012).ADSCrossRefGoogle Scholar
  57. [56]
    J-W. Lee, H-C. Kim and J. Lee, J. Korean Phys. Soc. 63, 1094 (2013).ADSCrossRefGoogle Scholar
  58. [57]
    T. Faulkner et al., JHEP 03, 051 (2014).ADSMathSciNetCrossRefGoogle Scholar
  59. [58]
    E. Oh, I. Y. Park and S-J. Sin, Phys. Rev. D 98, 026020 (2018).ADSCrossRefGoogle Scholar
  60. [59]
    M. Van Raamsdonk, Gen. Rel. Grav. 42, 2323 (2010), [Int. J. Mod. Phys. D 19, 2429 (2010)].ADSCrossRefGoogle Scholar
  61. [60]
    E. Martin-Martinez and N. C. Menicucci, Class. Quant. Grav. 29, 224003 (2012).ADSCrossRefGoogle Scholar
  62. [61]
    E. Martin-Martinez and N. C. Menicucci, Class. Quant. Grav. 31, 214001 (2014).ADSCrossRefGoogle Scholar
  63. [62]
    Y. Nambu, Phys. Rev. D 78, 044023 (2008).ADSCrossRefGoogle Scholar
  64. [63]
    G.’t Hooft, Salam-festschrifft (World Scientific, Singapore, 1993), Conf. Proc. C 930308, 284 (1993).Google Scholar
  65. [64]
    L. Susskind, J. Math. Phys. 36, 6377 (1995).ADSMathSciNetCrossRefGoogle Scholar
  66. [65]
    H-C. Kim, J-W. Lee and J. Lee, Mod. Phys. Lett. A 25, 1581 (2010).ADSCrossRefGoogle Scholar
  67. [66]
    H-C. Kim, J-W. Lee and J. Lee, JCAP 0808, 035 (2008).ADSCrossRefGoogle Scholar
  68. [67]
    J-W. Lee, Talk given at the KIAS Workshop on Quantum Information Sciences Aug. 19, 2009, Seoul, Korea.Google Scholar
  69. [68]
    A. R. Liddle and D. H. Lyth, Cosmological inflation and large-scale structure (Cambridge University Press, New York, 2000).zbMATHCrossRefGoogle Scholar
  70. [69]
    S. Weinberg, Gravitation and Cosmology (John Wiley and Sons, Inc. New York, 1972).Google Scholar
  71. [70]
    E. W. Kolb and M. Turner, The Early Universe (Addison-Wesley, Redwood City, 1990).zbMATHGoogle Scholar
  72. [71]
    T. Padmanabhan, Theoretical Astrophysics (Cambridge Univ. Press, New York, 2000).zbMATHCrossRefGoogle Scholar
  73. [72]
    E. Hubble, PNAS 15, 168 (1929).ADSCrossRefGoogle Scholar
  74. [73]
    D. Huterer and G. Starkman, Phys. Rev. Lett. 90, 031301 (2003).ADSCrossRefGoogle Scholar
  75. [74]
    D. Huterer and A. Cooray, Phys. Rev. D 71, 023506 (2005).ADSCrossRefGoogle Scholar
  76. [75]
    Q-G. Huang, M. Li, X-D. Li and S. Wang, Phys. Rev. D 80, 083515 (2009).ADSCrossRefGoogle Scholar
  77. [76]
    S. Wang, X-D. Li and M. Li, Phys. Rev. D83, 023010 (2011).ADSGoogle Scholar
  78. [77]
    X-D. Li, S. Li, S. Wang, W-S. Zhang, Q-G. Huang and M. Li, JCAP 1107, 011 (2011).ADSCrossRefGoogle Scholar
  79. [78]
    S. Wang, Y. Hu, M. Li and N. Li, Astrophys. J. 821, 60 (2016).ADSCrossRefGoogle Scholar
  80. [79]
    T. Padmanabhan, Class. Quant. Grav. 19, L167 (2002).ADSMathSciNetCrossRefGoogle Scholar
  81. [80]
    T. Padmanabhan, Class. Quant. Grav. 22, L107 (2005).ADSCrossRefGoogle Scholar
  82. [81]
    S. D. H. Hsu, Phys. Lett. B 594, 13 (2004).ADSCrossRefGoogle Scholar
  83. [82]
    Q-G. Huang and M. Li, JCAP 0408, 013 (2004).ADSCrossRefGoogle Scholar
  84. [83]
    Q-G. Huang and Y. Gong, JCAP 0408, 006 (2004).ADSCrossRefGoogle Scholar
  85. [84]
    S. Wang, J-J. Geng, Y-L. Hu and X. Zhang, Sci. China Phys. Mech. Astron. 58, 019801 (2015).Google Scholar
  86. [85]
    R-G. Cai, Phys. Lett. B 657, 228 (2007).ADSMathSciNetCrossRefGoogle Scholar
  87. [86]
    Y. Gong and J. Liu, J. Cosmol. Astroptl. Phys. 0809, 010 (2008).ADSCrossRefGoogle Scholar
  88. [87]
    Y. Gong, Phys. Rev. D 70, 064029 (2004).ADSCrossRefGoogle Scholar
  89. [88]
    J. Liu, Y. Gong and X. Chen, Phys. Rev. D 81, 083536 (2010).ADSCrossRefGoogle Scholar
  90. [89]
    S. Nojiri and S. D. Odintsov, Gen. Rel. Grav. 38, 1285 (2006).ADSCrossRefGoogle Scholar
  91. [90]
    H. Wei and R-G. Cai, Phys. Lett. B 660, 113 (2008).ADSCrossRefGoogle Scholar
  92. [91]
    M. Ito, Europhys. Lett. 71, 712 (2005).ADSCrossRefGoogle Scholar
  93. [92]
    R. Horvat, Phys. Rev. D 70, 087301 (2004).ADSMathSciNetCrossRefGoogle Scholar
  94. [93]
    D. Pavon and W. Zimdahl, Phys. Lett. B 628, 206 (2005).ADSCrossRefGoogle Scholar
  95. [94]
    H-C. Kim, J-W. Lee and J. Lee, Phys. Lett. B 661, 67 (2008).ADSCrossRefGoogle Scholar
  96. [95]
    P. C. W. Davies, Class. Quant. Grav. 5, 1349 (1988); Class. Quant. Grav. 4, L225 (1987).ADSCrossRefGoogle Scholar
  97. [96]
    M. D. Pollock and T. P. Singh, Class. Quant. Grav. 65, 901 (1989).ADSCrossRefGoogle Scholar
  98. [97]
    M. Li, X. D. Li, J. Meng and Z. Zhang, Phys. Rev. D 88, 023503 (2013).ADSCrossRefGoogle Scholar
  99. [98]
    J. L. Cui and J. F. Zhang, Eur. Phys. J. C 74, 2849 (2014).ADSCrossRefGoogle Scholar
  100. [99]
    A. Rozas-Fernndez, Eur. Phys. J. C 74, 3019 (2014).ADSCrossRefGoogle Scholar
  101. [100]
    C. Gao, F. Wu, X. Chen and Y-G. Shen, Phys. Rev. D 79, 043511 (2009).ADSCrossRefGoogle Scholar
  102. [101]
    H. Reeh and S. Schlieder, Nuovo Cimento 22, 1051 (1961).CrossRefGoogle Scholar
  103. [102]
    S. Summers and R. Werner, Phys. Lett. A 110, 257 (1985).ADSMathSciNetCrossRefGoogle Scholar
  104. [103]
    M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).ADSMathSciNetCrossRefGoogle Scholar
  105. [104]
    R. Müller and C. O. Lousto, Phys. Rev. D 52, 4512 (1995).ADSCrossRefGoogle Scholar
  106. [105]
    E. Bianchi, Horizon entanglement entropy and universality of the graviton coupling, arXiv:1211.0522.Google Scholar
  107. [106]
    D. A. Easson, P. H. Frampton and G. Smoot, Phys. Lett. B 696, 273 (2011).ADSCrossRefGoogle Scholar
  108. [107]
    M. Li and Y. Wang, Phys. Lett. B 687, 243 (2010).ADSCrossRefGoogle Scholar
  109. [108]
    Y. Zhang, Y-G. Gong and Z-H. Zhu, Int. J. Mod. Phys. D 20, 1505 (2011).ADSCrossRefGoogle Scholar
  110. [109]
    S-W. Wei, Y-X. Liu and Y-Q. Wang, Commun. Theor. Phys. 56, 455 (2011).ADSCrossRefGoogle Scholar
  111. [110]
    E. Komatsu et al. [WMAP Collaboration], Astrophys. J. Suppl. 192, 18 (2011).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2019

Authors and Affiliations

  1. 1.Department of Renewable EnergyJungwon UniversityGoesanKorea
  2. 2.School of Liberal Arts and SciencesKorea National University of TransportationChungjuKorea
  3. 3.Division of Mathematics and PhysicsDaejin UniversityPocheonKorea

Personalised recommendations