Journal of the Korean Physical Society

, Volume 73, Issue 1, pp 95–99 | Cite as

Strain Simulation of Diamond NV Centers in High Q-Factor Diamond Membranes

  • Sunuk Choe
  • Donghun LeeEmail author


In the field of strain-based hybrid mechanical systems, understanding the local strain profile and realizing strong strain coupling is crucial. Here a theoretical investigation is conducted on hybrid devices consisting of diamond membranes with a high Q-factor and embedded nitrogen-vacancy defect centers. Simulation based on a three-dimensional finite element method reveals microscopic strain distribution in the membrane’s basis as well as in the defect’s basis. For strong strain coupling, we design diamond phononic crystal devices with a honeycomb lattice, enabling localized strain in a small mode volume and an enhanced Q-factor. The hybrid devices studied in this paper are promising candidates for various quantum applications, including strain-mediated long range spin-spin interaction, multi-mode optomechanics, and topological operations with exceptional points.


Diamond NV center Diamond mechanical oscillator Strain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Treutlein, C. Genes, K. Hammerer, M. Poggio and P. Rabl, Hybrid Mechanical Systems edited by M. Aspelmeyer, T. J. Kippenberg and F. Marquardt (Springer, Berlin, 2014).Google Scholar
  2. [2]
    D. Lee, K. W. Lee, J. V. Cady, P. Ovartchaiyapong and A. C. B. Jayich, Journal of Optics 19, 033001 (2017).ADSCrossRefGoogle Scholar
  3. [3]
    A. Jockel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher and P. Treutlein, Nat. Nanotechnol. 10, 55 (2014).ADSCrossRefGoogle Scholar
  4. [4]
    A. D. O’Connell et al., Nature 464, 697 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    I. Yeo et al., Nat. Nanotechnol. 9, 106 (2014).ADSCrossRefGoogle Scholar
  6. [6]
    P. Ovartchaiyapong, K. W. Lee, B. A. Myers and A. C. B. Jayich, Nat. Commun. 5, 4429 (2014).ADSCrossRefGoogle Scholar
  7. [7]
    K. W. Lee, D. Lee, P. Ovartchaiyapong, J. Minguzzi, J. R. Maze and A. C. B. Jayich, Phys. Rev. Appl. 6, 034005 (2016).ADSCrossRefGoogle Scholar
  8. [8]
    A. Barfuss, J. Teissier, E. Neu, A. Nunnenkamp and P. Maletinsky, Nat. Phys. 11, 820 (2015).CrossRefGoogle Scholar
  9. [9]
    D. A. Golter, T. Oo, M. Amezcua, K. A. Stewart and H. Wang, Phys. Rev. Lett. 116, 143602 (2016).ADSCrossRefGoogle Scholar
  10. [10]
    P. Ovartchaiyapong, L. M. A. Pascal, B. A. Myers, P. Lauria and A. C. B. Jayich, Appl. Phys. Lett. 101, 163505 (2012).ADSCrossRefGoogle Scholar
  11. [11]
    M. J. Burek, Y. Chu Y, M. S. Z. Liddy, P. Patel, J. Rochman, S. Meesala, W. Hong, Q. Quan, M. D. Lukin and M. Loncar, Nat. Commun. 5, 5718 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    D. Lee, M. Underwood, D. Mason, A. B. Shkarin, S. W. Hoch and J. G. E. Harris, Nat. Commun. 6, 6232 (2015).ADSCrossRefGoogle Scholar
  13. [13]
    H. Xu, D. Mason, L. Jiang and J. G. E. Harris, Nature 537, 80 (2016).ADSCrossRefGoogle Scholar
  14. [14]
    J. Chan et al., Nature 478, 89 (2011).ADSCrossRefGoogle Scholar
  15. [15]
    Y. Tsaturyan, A. Barg, E. S. Polzik and A. Schliesser, Nat. Nanotechnol. 12, 776 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsKorea UniversitySeoulKorea

Personalised recommendations