Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 6, pp 805–816 | Cite as

Recent Advances in Synthesis and Assembly of van der Waals Materials

  • Dongil Chu
  • Eun Kyu Kim
Review Articles
  • 94 Downloads
Part of the following topical collections:
  1. JKPS 50th Anniversary Reviews

Abstract

After the discovery of graphene, other two-dimensional (2D) layered crystals have attracted extensive attention because of their fundamental physical properties. Semiconducting 2D solids, such as transition metal dichalcogenides (TMDCs), has superior benefits in terms of the ultra-thin body, high mechanical strength, and thermal stability. Most importantly, a new material platform could overcome the performance of graphene with a sizable electronic gap. As expected, the materials have a variety of device applications. Atomically thin TMDC layer preparation and assembly have been combined for generating a van der Waals layered material due to lack of robust techniques for epitaxial growth. In spite of significant research efforts on material growth, large-scale growth with defect-free film quality remains a challenge. Here, we provide an overview of the traditional approach and recent progress in top-down methods such as vapor phase growth and solution processes. Layer-by-layer stacking of diverse material toward the realization of complex heterostructured devices is discussed. State-of-the-art assembling techniques with alternative methods are described.

Keywords

2D layered materials Van der Waals materials Heterostructure Transition metal dichalcogenides Synthesis 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea grant funded by the Korean government (Ministry of Science and ICT) (NRF2016R1A2B4011706).

References

  1. [1]
    K. S. Novoselov, Z. Jiang, Y. Zhang, S. Morozov, H. Stormer, U. Zeitler, J. Maan, G. Boebinger, P. Kim and A. Geim, Science 315, 1379 (2007).ADSGoogle Scholar
  2. [2]
    H. Dery, P. Dalal, Ł. Cywiński and L. J. Sham, Nature 447, 573 (2007).ADSGoogle Scholar
  3. [3]
    J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead and P. L. McEuen, Science 315, 490 (2007).ADSGoogle Scholar
  4. [4]
    L. Liao, Y-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang and X. Duan, Nature 467, 305 (2010).ADSGoogle Scholar
  5. [5]
    Y-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H-Y. Chiu, A. Grill and P. Avouris, Science 327, 662 (2010).ADSGoogle Scholar
  6. [6]
    C. Ataca, H. S¸ahin and S. Ciraci, J. Phys. Chem. C 116, 8983 (2012).Google Scholar
  7. [7]
    F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii and K. S. Novoselov, Nat. Mater. 14, 301 (2015).ADSGoogle Scholar
  8. [8]
    X. Hong, J. Kim, S-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang and F. Wang, Nat. Nanotechnol. 9, 682 (2014).ADSGoogle Scholar
  9. [9]
    D. Chu, Y. H. Lee and E. K. Kim, Sci. Adv. 3, e1602726 (2017).ADSGoogle Scholar
  10. [10]
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004).ADSGoogle Scholar
  11. [11]
    P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth and A. K. Geim, Appl. Phys. Lett. 91, 063124 (2007).ADSGoogle Scholar
  12. [12]
    M. M. Benameur, B. Radisavljevic, J. S. Heron, S. Sahoo, H. Berger and A. Kis, Nanotechnology 22, 125706 (2011).ADSGoogle Scholar
  13. [13]
    H. Li, J. Wu, X. Huang, G. Lu, J. Yang, X. Lu, Q. Xiong and H. Zhang, ACS Nano 7, 10344 (2013).Google Scholar
  14. [14]
    S. Y. Hu, C. H. Liang, K. K. Tiong and Y. S. Huang, J. Alloys Compd. 442, 249 (2007).Google Scholar
  15. [15]
    K. K. Tiong and T. S. Shou, Journal of Physics: Condensed Matter 12, 5043 (2000).ADSGoogle Scholar
  16. [16]
    P. C. Yen, Y. S. Huang and K. K. Tiong, J. Phys.: Condens. Matter 16, 2171 (2004).ADSGoogle Scholar
  17. [17]
    S. Y. Hu, M. C. Cheng, K. K. Tiong and Y. S. Huang, J. Phys.: Condens. Matter 17, 3575 (2005).ADSGoogle Scholar
  18. [18]
    S. Y. Hu, C. H. Liang, K. K. Tiong, Y. C. Lee and Y. S. Huang, J. Cryst. Growth 285, 408 (2005).ADSGoogle Scholar
  19. [19]
    J. Suh, T-E. Park, D-Y. Lin, D. Fu, J. Park, H. J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun, R. Sinclair, J. Chang, S. Tongay and J. Wu, Nano Lett. 14, 6976 (2014).ADSGoogle Scholar
  20. [20]
    D. Qiu, D. U. Lee, K. S. Lee, S. W. Pak and E. K. Kim, Nano Res. 9, 2319 (2016).Google Scholar
  21. [21]
    S. Bertolazzi, D. Krasnozhon and A. Kis, ACS Nano 7, 3246 (2013).Google Scholar
  22. [22]
    W. J. Yu, Z. Li, H. L. Zhou, Y. Chen, Y. Wang, Y. Huang and X. F. Duan, Nat. Mater. 12, 246 (2013).ADSGoogle Scholar
  23. [23]
    Y-F. Lin, W. Li, S-L. Li, Y. Xu, A. Aparecido-Ferreira, K. Komatsu, H. Sun, S. Nakaharai and K. Tsukagoshi, Nanoscale 6, 795 (2014).Google Scholar
  24. [24]
    S. Yohta, M. Rai, Y. Takehiro, I. Yoshihisa, M. Sei, Y. Naoto, M. Satoru and M. Tomoki, Jpn. J. Appl. Phys. 54, 04DJ04 (2015).Google Scholar
  25. [25]
    H. Wang, L. L. Yu, Y. H. Lee, Y. M. Shi, A. Hsu, M. L. Chin, L. J. Li, M. Dubey, J. Kong and T. Palacios, Nano Lett. 12, 4674 (2012).ADSGoogle Scholar
  26. [26]
    B. Radisavljevic, M. B. Whitwick and A. Kis, ACS Nano 5, 9934 (2011).Google Scholar
  27. [27]
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotechnol. 6, 147 (2011).ADSGoogle Scholar
  28. [28]
    Y. J. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan and J. Lou, Small 8, 966 (2012).Google Scholar
  29. [29]
    Y. C. Lin, W. J. Zhang, J. K. Huang, K. K. Liu, Y. H. Lee, C. T. Liang, C. W. Chu and L. J. Li, Nanoscale 4, 6637 (2012).ADSGoogle Scholar
  30. [30]
    Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li and T. W. Lin, Adv. Mater. 24, 2320 (2012).Google Scholar
  31. [31]
    X. Ling, Y. H. Lee, Y. X. Lin, W. J. Fang, L. L. Yu, M. S. Dresselhaus and J. Kong, Nano Lett. 14, 464 (2014).ADSGoogle Scholar
  32. [32]
    Y. H. Lee, L. L. Yu, H. Wang, W. J. Fang, X. Ling, Y. M. Shi, C. T. Lin, J. K. Huang, M. T. Chang, C. S. Chang, M. Dresselhaus, T. Palacios, L. J. Li and J. Kong, Nano Lett. 13, 1852 (2013).ADSGoogle Scholar
  33. [33]
    K. K. Liu, W. J. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Su, C. S. Chang, H. Li, Y. M. Shi, H. Zhang, C. S. Lai and L. J. Li, Nano Lett. 12, 1538 (2012).ADSGoogle Scholar
  34. [34]
    D. Qiu, D. U. Lee, S. W. Pak and E. K. Kim, Thin Solid Films 587, 47 (2015).ADSGoogle Scholar
  35. [35]
    S. J. Park, S. W. Pak, D. Qiu, J. H. Kang, D. Y. Song and E. K. Kim, J. Lumin. 183, 62 (2017).Google Scholar
  36. [36]
    A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. M. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller and J. C. Hone, Nat. Mater. 12, 554 (2013).ADSGoogle Scholar
  37. [37]
    S. Najmaei, Z. Liu, W. Zhou, X. L. Zou, G. Shi, S. D. Lei, B. I. Yakobson, J. C. Idrobo, P. M. Ajayan and J. Lou, Nat. Mater. 12, 754 (2013).ADSGoogle Scholar
  38. [38]
    Y. Zhang, Y. F. Zhang, Q. Q. Ji, J. Ju, H. T. Yuan, J. P. Shi, T. Gao, D. L. Ma, M. X. Liu, Y. B. Chen, X. J. Song, H. Y. Hwang, Y. Cui and Z. F. Liu, ACS Nano 7, 8963 (2013).Google Scholar
  39. [39]
    J. K. Huang, J. Pu, C. L. Hsu, M. H. Chiu, Z. Y. Juang, Y. H. Chang, W. H. Chang, Y. Iwasa, T. Takenobu and L. J. Li, ACS Nano 8, 923 (2014).Google Scholar
  40. [40]
    A. L. Elias et al., ACS Nano 7, 5235 (2013).Google Scholar
  41. [41]
    K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C-J. Kim, D. Muller and J. Park, Nature 520, 656 (2015).ADSGoogle Scholar
  42. [42]
    G-H. Lee, Y-J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim and J. Hone, Appl. Phys. Lett. 99, 243114 (2011).ADSGoogle Scholar
  43. [43]
    D. Chu, S. W. Pak and E. K. Kim, Sci. Rep. 8, 10585 (2018).Google Scholar
  44. [44]
    C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard and J. Hone, Nat. Nanotechnol. 5, 722 (2010).ADSGoogle Scholar
  45. [45]
    M. Okada, T. Sawazaki, K. Watanabe, T. Taniguch, H. Hibino, H. Shinohara and R. Kitaura, ACS Nano 8, 8273 (2014).Google Scholar
  46. [46]
    S. Wang, X. Wang and J. H. Warner, ACS Nano 9, 5246 (2015).Google Scholar
  47. [47]
    A. Yan, J. Velasco, S. Kahn, K. Watanabe, T. Taniguchi, F. Wang, M. F. Crommie and A. Zettl, Nano Lett. 15, 6324 (2015).ADSGoogle Scholar
  48. [48]
    L. Fu, Y. Sun, N. Wu, R. G. Mendes, L. Chen, Z. Xu, T. Zhang, M. H. Rümmeli, B. Rellinghaus, D. Pohl, L. Zhuang and L. Fu, ACS Nano 10, 2063 (2016).Google Scholar
  49. [49]
    Z. Zhang, X. Ji, J. Shi, X. Zhou, S. Zhang, Y. Hou, Y. Qi, Q. Fang, Q. Ji, Y. Zhang, M. Hong, P. Yang, X. Liu, Q. Zhang, L. Liao, C. Jin, Z. Liu and Y. Zhang, ACS Nano 11, 4328 (2017).Google Scholar
  50. [50]
    Y. M. Shi, W. Zhou, A. Y. Lu, W. J. Fang, Y. H. Lee, A. L. Hsu, S. M. Kim, K. K. Kim, H. Y. Yang, L. J. Li, J. C. Idrobo and J. Kong, Nano Lett. 12, 2784 (2012).ADSGoogle Scholar
  51. [51]
    G. W. Shim, K. Yoo, S-B. Seo, J. Shin, D. Y. Jung, I-S. Kang, C. W. Ahn, B. J. Cho and S-Y. Choi, ACS Nano 8, 6655 (2014).Google Scholar
  52. [52]
    M. Zhao, Y. Ye, Y. Han, Y. Xia, H. Zhu, S. Wang, Y. Wang, D. A. Muller and X. Zhang, Nat. Nanotechnol. 11, 954 (2016).ADSGoogle Scholar
  53. [53]
    X. Zhang, F. Meng, J. R. Christianson, C. Arroyo- Torres, M. A. Lukowski, D. Liang, J. R. Schmidt and S. Jin, Nano Lett. 14, 3047 (2014).ADSGoogle Scholar
  54. [54]
    X. Li, M-W. Lin, J. Lin, B. Huang, A. A. Puretzky, C. Ma, K. Wang, W. Zhou, S. T. Pantelides, M. Chi, I. Kravchenko, J. Fowlkes, C. M. Rouleau, D. B. Geohegan and K. Xiao, Sci. Adv. 2, e1501882 (2016).ADSGoogle Scholar
  55. [55]
    M-Y. Li, Y. Shi, C-C. Cheng, L-S. Lu, Y-C. Lin, H-L. Tang, M-L. Tsai, C-W. Chu, K-H. Wei, J-H. He, WH. Chang, K. Suenaga and L-J. Li, Science 349, 524 (2015).ADSGoogle Scholar
  56. [56]
    C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden and X. Xu, Nat. Mater. 13, 1096 (2014).Google Scholar
  57. [57]
    X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang and X. Duan, Nat. Nanotechnol. 9, 1024 (2014).ADSGoogle Scholar
  58. [58]
    Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, Beng K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou and P. M. Ajayan, Nat. Mater. 13, 1135 (2014).ADSGoogle Scholar
  59. [59]
    J. N. Coleman et al., Science 331, 568 (2011).ADSGoogle Scholar
  60. [60]
    L. S. Kyo, C. Dongil, S. Da Ye, P. S. Woo and K. E. Kyu, Nanotechnology 28, 195703 (2017).ADSGoogle Scholar
  61. [61]
    G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen and M. Chhowalla, Nano Lett. 11, 5111 (2011).ADSGoogle Scholar
  62. [62]
    Z. Zeng, Z. Yin, X. Huang, H. Li, Q. He, G. Lu, F. Boey and H. Zhang, Angew. Chem., Int. Ed. 50, 11093 (2011).Google Scholar
  63. [63]
    J. Kim et al., Nat. Commun. 6, 8294 (2015).Google Scholar
  64. [64]
    D. McManus et al., Nat. Nanotechnol. 12, 343 (2017).ADSGoogle Scholar
  65. [65]
    S. K. Lee, D. Chu, J. Yoo and E. K. Kim, Sol. Energy Mater. Sol. Cells 184, 9 (2018).Google Scholar
  66. [66]
    L. Jiantong, M. N. Maziar, V. Sam, C. L. Max and Ö. Mikael, Adv. Funct. Mater. 24, 6524 (2014).Google Scholar
  67. [67]
    G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer and J. N. Coleman, ACS Nano 6, 3468 (2012).Google Scholar
  68. [68]
    A. O’Neill, U. Khan and J. N. Coleman, Chem. Mater. 24, 2414 (2012).Google Scholar
  69. [69]
    A. Jawaid, D. Nepal, K. Park, M. Jespersen, A. Qualley, P. Mirau, L. F. Drummy and R. A. Vaia, Chem. Mater. 28, 337 (2016).Google Scholar
  70. [70]
    D. Gopalakrishnan, D. Damien and M. M. Shaijumon, ACS Nano 8, 5297 (2014).Google Scholar
  71. [71]
    K. Lee, H-Y. Kim, M. Lotya, J. N. Coleman, G-T. Kim and G. S. Duesberg, Adv. Mater. 23, 4178 (2011).Google Scholar
  72. [72]
    S. Ghosh, A. Winchester, B. Muchharla, M. Wasala, S. Feng, A. L. Elias, M. B. M. Krishna, T. Harada, C. Chin, K. Dani, S. Kar, M. Terrones and S. Talapatra, Sci. Rep. 5, 11272 (2015).ADSGoogle Scholar
  73. [73]
    J. S. Ronan et al., Adv. Mater. 23, 3944 (2011).Google Scholar
  74. [74]
    P. May, U. Khan, J. M. Hughes and J. N. Coleman, J. Phys. Chem. C 116, 11393 (2012).Google Scholar
  75. [75]
    X. Yu, M. S. Prévot and K. Sivula, Chem. Mater. 26, 5892 (2014).Google Scholar
  76. [76]
    Z. Zhiyuan, S. Ting, Z. Jixin, H. Xiao, Y. Zongyou, L. Gang, F. Zhanxi, Y. Qingyu, H. H. Hoon and Z. Hua, Angew. Chem., Int. Ed. 51, 9052 (2012).Google Scholar
  77. [77]
    J. Zheng, H. Zhang, S. Dong, Y. Liu, C. T. Nai, H. S. Shin, H. Y. Jeong, B. Liu and K. P. Loh, Nat. Commun. 5, 3995 (2014).Google Scholar
  78. [78]
    K. Parvez, Z-S. Wu, R. Li, X. Liu, R. Graf, X. Feng and K. Müllen, J. Am. Chem. Soc. 136, 6083 (2014).Google Scholar
  79. [79]
    Z. Zeng, C. Tan, X. Huang, S. Bao and H. Zhang, Energy Environ. Sci. 7, 797 (2014).Google Scholar
  80. [80]
    A. Castellanos-Gomez, M. Buscema, R. Molenaar, V. Singh, L. Janssen, H. S. J. van der Zant and G. A. Steele, 2D Mater. 1, 011002 (2014).Google Scholar
  81. [81]
    J. D. Caldwell et al., ACS Nano 4, 1108 (2010).Google Scholar
  82. [82]
    A. Gurarslan, Y. Yu, L. Su, Y. Yu, F. Suarez, S. Yao, Y. Zhu, M. Ozturk, Y. Zhang and L. Cao, ACS Nano 8, 11522 (2014).Google Scholar
  83. [83]
    P. J. Zomer, S. P. Dash, N. Tombros and B. J. v. Wees, Appl. Phys. Lett. 99, 232104 (2011).ADSGoogle Scholar
  84. [84]
    K. Choi, Y. T. Lee, S-W. Min, H. S. Lee, T. Nam, H. Kim and S. Im, J. Mater. Chem. C 1, 7803 (2013).Google Scholar
  85. [85]
    F. Ying and C. Ke, Nanotechnology 26, 035302 (2015).ADSGoogle Scholar
  86. [86]
    K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J-H. Ahn, P. Kim, J-Y. Choi and B. H. Hong, Nature 457, 706 (2009).ADSGoogle Scholar
  87. [87]
    M. A. Meitl, Z-T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo and J. A. Rogers, Nat. Mater. 5, 33 (2005).ADSGoogle Scholar
  88. [88]
    F. Pizzocchero, L. Gammelgaard, B. S. Jessen, J. M. Caridad, L. Wang, J. Hone, P. Bøggild and T. J. Booth, Nat. Commun. 7, 11894 (2016).ADSGoogle Scholar
  89. [89]
    X. Ma, Q. Liu, D. Xu, Y. Zhu, S. Kim, Y. Cui, L. Zhong and M. Liu, Nano Lett. 17, 6961 (2017).ADSGoogle Scholar
  90. [90]
    S. Goler, V. Piazza, S. Roddaro, V. Pellegrini, F. Beltram and P. Pingue, J. Appl. Phys. 110, 064308 (2011).ADSGoogle Scholar
  91. [91]
    D. Qiu and E. K. Kim, Sci. Rep. 5, 13743 (2015).ADSGoogle Scholar
  92. [92]
    D. Qiu, D. U. Lee, C. S. Park, K. S. Lee and E. K. Kim, Nanoscale 7, 17556 (2015).ADSGoogle Scholar
  93. [93]
    J. Achint, B. Palash, H. Sebastian, P. Markus, T. Takashi, W. Kenji and N. Lukas, Nanotechnology 29, 265203 (2018).ADSGoogle Scholar
  94. [94]
    H. Li, J. Wu, X. Huang, Z. Yin, J. Liu and H. Zhang, ACS Nano 8, 6563 (2014).Google Scholar
  95. [95]
    L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard and C. R. Dean, Science 342, 614 (2013).ADSGoogle Scholar
  96. [96]
    J. JuL et al., Nat. Nanotechnol. 9, 348 (2014).ADSMathSciNetGoogle Scholar
  97. [97]
    C-H. Lee, G-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone and P. Kim, Nat. Nanotechnol. 9, 676 (2014).ADSGoogle Scholar
  98. [98]
    P. J. Jeon, S-W. Min, J. S. Kim, S. R. A. Raza, K. Choi, H. S. Lee, Y. T. Lee, D. K. Hwang, H. J. Choi and S. Im, J. Mater. Chem. C 3, 2751 (2015).Google Scholar
  99. [99]
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science 324, 1312 (2009).ADSGoogle Scholar
  100. [100]
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett. 9, 30 (2009).ADSGoogle Scholar
  101. [101]
    A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu and J. Kong, J. Phys. Chem. C 112, 17741 (2008).Google Scholar
  102. [102]
    M. Her, R. Beams and L. Novotny, Phys. Lett. A 377, 1455 (2013).ADSMathSciNetGoogle Scholar
  103. [103]
    X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng and Q. Li, ACS Nano 5, 9144 (2011).Google Scholar
  104. [104]
    G. A. Salvatore, N. Muünzenrieder, C. Barraud, L. Petti, C. Zysset, L. Buüthe, K. Ensslin and G. Tröster, ACS Nano 7, 8809 (2013).Google Scholar
  105. [105]
    M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdörfer and T. Mueller, Nano Lett. 14, 4785 (2014).ADSGoogle Scholar
  106. [106]
    X-D. Chen, Z-B. Liu, W-S. Jiang, X-Q. Yan, F. Xing, P. Wang, Y. Chen and J-G. Tian, Sci. Rep. 3, 03216 (2013).Google Scholar
  107. [107]
    Z. Zhang, J. Du, D. Zhang, H. Sun, L. Yin, L. Ma, J. Chen, D. Ma, H-M. Cheng and W. Ren, Nat. Commun. 8, 14560 (2017).ADSGoogle Scholar
  108. [108]
    K. Kang, K-H. Lee, Y. Han, H. Gao, S. Xie, D. A. Muller and J. Park, Nature 550, 229 (2017).ADSGoogle Scholar
  109. [109]
    K. Kang, J. Song, F-Y. Kam, R-Q. Png, W-L. Seah, JM. Zhuo, G-K. Lim, P. K. H. Ho and L-L. Chua, Nat. Nanotechnol. 8, 356 (2013).ADSGoogle Scholar
  110. [110]
    P. Li, C. Chen, J. Zhang, S. Li, B. Sun and Q. Bao, Front. Mater. 1, 26 (2014).Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Quantum-Function Research Laboratory and Department of PhysicsHanyang UniversitySeoulKorea

Personalised recommendations