Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 6, pp 747–792 | Cite as

Mesoscopic Transport Events and the Breakdown of Fick’s Law for Turbulent Fluxes

  • T. S. Hahm
  • P. H. Diamond
Review Articles
Part of the following topical collections:
  1. JKPS 50th Anniversary Reviews

Abstract

This paper presents a pedagogical review of the physics of mesoscopic transport events and their role in the breakdown of Fick’s Law for turbulent transport in magnetically confined plasma. It is now clear that the conventional picture of localized turbulence and quasi-linear calculation of fluxes fails to address and account for the phenomenology of tokamak transport. One key issue is the observed departure from the expected gyro-Bohm transport scaling. The causes of this breakdown of Fickian thinking include turbulent avalanching and pulse propagation (turbulence spreading). Both are mesoscopic transport events, and both tend to de-localize the flux–gradient relation. Turbulence spreading is the process of self-scattering and expansion of a slug or other local exciton of turbulence. Spreading is described by theoretically-motivated, phenomenological reaction–diffusion models for the turbulence activity (intensity) field, much in the spirit of Ginzburg–Landau theory. Such models imply that spreading will occur by propagation of intensity fronts. After discussing the basic theory, this paper presents several critical tests of turbulence spreading models using gyrokinetic simulation. Applications include rho-star scaling, penetration of transport barriers and core-edge coupling. Relevant experiment–theory comparisons are addressed, as well. Avalanching refers to a process whereby correlated topplings of nearby localized cells overturn sequentially and drive a burst of transport. Avalanching is a process intrinsic to systems that support a broad range of scales l between a cell size Δ and system size L, i.e. Δ < l < L. Avalanching is also a natural way to produce transport events on scales that exceed the cell size or correlation length. Therefore, the PDF (probability distribution function) of avalanches as a function of l is a crucial quantity, necessary for predicting confinement in a system like ITER, with a very large-scale separation between L and Δ. Avalanching emerged from the theory of selforganized criticality but is a more general phenomenon. The paper traces the intellectual prehistory of avalanching through the advent of self-organized criticality. Special focus is devoted to reduced continuum models of avalanching. The physics of avalanching in confined plasma is discussed in detail, via several multi-faceted comparisons to flux-driven fluid and gyrokinetic simulations. The dominance of bursty, large transport events in the flux is identified. Evidence for avalanching in basic and confinement experiments is summarized. The paper concludes with sections on selected special topics, a discussion of the relation between turbulence spreading and avalanching, and a list of possible future directions. Throughout the paper, an effort is made to set fusion theory and phenomenology in the context of ideas discussed in the broader scientific community.

Keywords

Self-organization Turbulence spreading Avalanches Entrainment Mesoscopic transport Intermittency, Non-local transport Self-organized criticality Magnetically confined plasma Transport events, Fluctuation front propagation 

Notes

Acknowledgments

We would like to acknowledge useful discussions with A. Ashourvan, S. Cappello, B. A. Carreras, L. Chen, M. J. Choi, B. Compernolle, P. Davidson, G. Dif-Pradalier, X. T. Ding, X. Fan, X. Garbet, N. Goldenfeld, D. Guo, W. X. Guo, Z. B. Guo, O. D. Gurcan, R. Hajjar, R. Heinonen, P. Hennequin, C. Hidalgo, R. Hong, D. W. Hughes, T. Hwa, K. Ida, S. Inagaki, K. Itoh, S-I. Itoh, H. G. Jhang, R. Ke, S. Keating, E-J. Kim, S. S. Kim, Y. Kosuga, S. Ku, J. M. Kwon, J. C. Li, Z. Lin, T. Long, R. Ma, V. Naulin, D. E. Newman, Y. Pomeau, T. Rhee, Y. Sarazin, B. D. Scott, Z. B. Shi, H. J. Sun, R. D. Sydora, K. Thompson, L. Villard, L. Wang, W. X. Wang, Z. H. Wang, W. Xiao, Y. Xu, M. Yagi, W. R. Young, S. Yi, Y. Zhang and F. Zonca. We have also benefitted from the Festival de Theorie 2003, 2005 and 2017 where many of the subjects addressed in this review were discussed. We would also like to thank Mr. G. J. Choi for his dedicated work in preparing this manuscript.

This work was supported by the Ministry of Science, ICT and Future Planning of the Republic of Korea under the Korean ITER project contract, and National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2014M1A7A1A03045368), by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Number DEFG02- 04ER54738, and by the Center for Fusion Science, Southwest Institute of Physics, China. PD thanks SWIP for hospitality during the completion of a portion of this work.

References

  1. [1]
    F. Wagner et al., Phys. Rev. Lett. 49, 1408 (1982).ADSGoogle Scholar
  2. [2]
    P. A. Davidson, J. Turb. 1, N6 (2000).ADSGoogle Scholar
  3. [3]
    P. H. Diamond, S-I. Itoh, K. Itoh and T. S. Hahm, Plasma Phys. Control. Fusion 47, R35 (2005).Google Scholar
  4. [4]
    Z. B. Guo et al., submitted (2018).Google Scholar
  5. [5]
    G. I. Barenblatt, Similarity, Self-similarity, and Intermediate Asymptotics (New York and London: Consultant Bureau, 1979).zbMATHGoogle Scholar
  6. [6]
    L. G. Loitsyansky, Centr. Aero. Hydrodyn. Inst. Moscow, Rep. no. 440(Trans. NACA Tech. Memo. 1079) (1939).Google Scholar
  7. [7]
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, 1st ed. (Oxford: Pergamon, 1959), p. 141.Google Scholar
  8. [8]
    Y. Pomeau, Phys. D: Nonlinear Phenom. 23, 3 (1986).ADSGoogle Scholar
  9. [9]
    Y. Pomeau, C. R. Mecanique 343, 210 (2015).ADSGoogle Scholar
  10. [10]
    G. B. Whitham, Linear and Nonlinear Waves (Wiley- Interscience, New York, 1999).Google Scholar
  11. [11]
    S. M. Kaye et al., Nucl. Fusion 47, 499 (2007).ADSGoogle Scholar
  12. [12]
    R. Nazikian, K. Shinohara, G. J. Kramer, E. Valeo, K. Hill, T. S. Hahm, G. Rewoldt, S. Ide, Y. Koide, Y. Oyama, H. Shirai and W. Tang, Phys. Rev. Lett. 94, 135002 (2005).ADSGoogle Scholar
  13. [13]
    X. Garbet, L. Laurent, A. Samain and J. Chinardet, Nucl. Fusion 34, 963 (1994).ADSGoogle Scholar
  14. [14]
    T. S. Hahm, P. H. Diamond, Z. Lin, K. Itoh and S-I. Itoh, Plasma Phys. Control. Fusion 46, A323 (2004).Google Scholar
  15. [15]
    E-J. Kim, P. H. Diamond, M. Malkov, T. S. Hahm, K. Itoh, S-I. Itoh, S. Champeaux, I. Gruzinov, O. Gurcan, C. Holland, M. N. Rosenbluth and A. Smolyakov, Nucl. Fusion 43, 961 (2003).ADSGoogle Scholar
  16. [16]
    O. Gurcan, P. H. Diamond, T. S. Hahm and Z. Lin, Phys. Plasmas 12, 032303 (2005).ADSGoogle Scholar
  17. [17]
    H. Sugama and M. Wakatani, J. Phys. Soc. Jpn. 61, 3166 (1992).ADSGoogle Scholar
  18. [18]
    P. H. Diamond, V. B. Lebedev, D. E. Newman, B. A. Carreras, T. S. Hahm, W. M. Tang, G. Rewoldt and K. Avinash, Phys. Rev. Lett. 78, 1472 (1997).ADSGoogle Scholar
  19. [19]
    D. E. Newman, B. A. Carreras, D. Lopez-Bruna, P. H. Diamond and V. B. Lebedev, Phys. Plasmas 5, 938 (1998).ADSGoogle Scholar
  20. [20]
    M. A. Malkov, P. H. Diamond and M. N. Rosenbluth, Phys. Plasmas 8, 5073 (2001).ADSGoogle Scholar
  21. [21]
    D. del-Castillo-Negrete, Phys. Plasmas 13, 082308 (2006).ADSMathSciNetGoogle Scholar
  22. [22]
    T. S. Hahm, P. H. Diamond, Z. Lin, G. Rewoldt, O. Gurcan and S. Ethier, Phys. Plasmas 12, 090903 (2005).Google Scholar
  23. [23]
    H. P. Furth, J. Kileen and M. N. Rosenbluth, Phys. Fluids 6, 459 (1963).ADSGoogle Scholar
  24. [24]
    R. D. Sydora, V. K. Decyk and J. M. Dawson, Plasma Phys. Control. Fusion 38, A281 (1996).ADSGoogle Scholar
  25. [25]
    Z. Lin, S. Ethier, T. S. Hahm and W. M. Tang, Phys. Rev. Lett. 88, 195004 (2002).ADSGoogle Scholar
  26. [26]
    V. B. Lebedev and P. H. Diamond, Phys. Plasmas 4, 1087 (1997).ADSMathSciNetGoogle Scholar
  27. [27]
    S-I. Itoh and K. Itoh, J. Phys. Soc. Japan 69, 408 (2000).ADSGoogle Scholar
  28. [28]
    Y. Sarazin, X. Garbet, Ph. Ghendrih and S. Benkadda, Phys. Plasmas 7, 1085 (2000).Google Scholar
  29. [29]
    X. Garbet, Y. Sarazin, F. Imbeaux, P. Ghendrih, C. Bourdelle, O. D. Gurcan and P. H. Diamond, Phys. Plasmas 14, 122305 (2007).ADSGoogle Scholar
  30. [30]
    L. Villard, S. J. Allfrey, A. Bottino, M. Brunetti, G. L. Falchetto, V. Grandgirard, R. Hatzky, J. Nuhrenberg, A. G. Peeters, O. Sauter, S. Sorge and J. Vaclavik, Nucl. Fusion 44, 172 (2004).ADSGoogle Scholar
  31. [31]
    L. Chen, R. B. White and F. Zonca, Phys. Rev. Lett. 92, 075004 (2004).ADSGoogle Scholar
  32. [32]
    L. Chen, Z. Lin and R. B. White, Phys. Plasmas 7, 3129 (2000).ADSGoogle Scholar
  33. [33]
    X. Garbet, private communication (2002).Google Scholar
  34. [34]
    B. B. Kadomtsev, Plasma Turbulence (Academic, New York, 1965).Google Scholar
  35. [35]
    R. A. Fisher, Ann. Eugenics 7, 353 (1937).Google Scholar
  36. [36]
    A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Clin. Cancer Res. 1, 1 (1937).Google Scholar
  37. [37]
    V. Naulin, A. H. Nielsen and J. Juul Rasmussen, Phys. Plasmas 12, 122306 (2005).ADSGoogle Scholar
  38. [38]
    J. Juul Rasmussen, V. Naulin, P. Mantica, J. S. Lonnroth, V. Parail and JET-EFDA Contributors, in Proceedings of the 33rd EPS Conference on Plasma Physics, (Rome, 19–23 June 2006 ECA), Vol. 301, p. 1076.Google Scholar
  39. [39]
    Z. H. Wang, P. H. Diamond, O. D. Gurcan, X. Garbet and X. G. Wang, Nucl. Fusion 51, 073009 (2011).ADSGoogle Scholar
  40. [40]
    Z. B. Guo and P. H. Diamond, Phys. Plasmas 24, 100705 (2017).Google Scholar
  41. [41]
    S. Inagaki et al. and the LHD Experiment Group, Nucl. Fusion 53, 113006 (2013).ADSGoogle Scholar
  42. [42]
    R. Heinonen and P. H. Diamond, submitted (2018).Google Scholar
  43. [43]
    O. D. Gurcan, P. H. Diamond and T. S. Hahm, Phys. Plasmas 13, 052306 (2006).ADSGoogle Scholar
  44. [44]
    R. V. Budny et al., Phys. Plasmas 7, 5038 (2000).ADSGoogle Scholar
  45. [45]
    G. R. McKee et al., Nucl. Fusion 41, 1235 (2001).ADSGoogle Scholar
  46. [46]
    P. Hennequin, R. Sabot, C. Honore, G. T. Hoang, X. Garbet, A. Truc, C. Fenzi and A. Quemeneur, Plasma Phys. Control. Fusion 46, B121 (2004).Google Scholar
  47. [47]
    Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang and R. B. White, Science 281, 1835 (1998).ADSGoogle Scholar
  48. [48]
    X. Garbet, Y. Idomura, L. Villard and T. H. Watanabe, Nucl. Fusion 50, 043002 (2010).ADSGoogle Scholar
  49. [49]
    E. A. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).ADSGoogle Scholar
  50. [50]
    T. S. Hahm, Phys. Fluids 31, 2670 (1988).ADSGoogle Scholar
  51. [51]
    S. E. Parker, H. E. Mynick, M. Artun, J. C. Cummings, V. Decyk, J. V. Kepner, W. W. Lee and W. M. Tang, Phys. Plasmas 3, 1959 (1996).ADSGoogle Scholar
  52. [52]
    Y. Kishimoto, T. Tajima, W. Horton, M. J. LeBrun and J. Y. Kim, Phys. Plasmas 3, 1289 (1996).ADSGoogle Scholar
  53. [53]
    W. W. Lee and R. Santoro, Phys. Plasmas 4, 169 (1997).ADSGoogle Scholar
  54. [54]
    Y. Idomura, M. Wakatani and S. Tokuda, Phys. Plasmas 7, 3551 (2000).ADSGoogle Scholar
  55. [55]
    Z. Lin and T. S. Hahm, Phys. Plasmas 11, 1099 (2004).ADSMathSciNetGoogle Scholar
  56. [56]
    A. M. Dimits et al., Phys. Plasmas 7, 969 (2000).ADSGoogle Scholar
  57. [57]
    B. F. McMillan, X. Lapillonne, S. Brunner, L. Villard, S. Jolliet, A. Bottino, T. Gorler and F. Jenko, Phys. Rev. Lett. 105, 155001 (2010).ADSGoogle Scholar
  58. [58]
    S. Jolliet, A. Bottino, P. Angelino, R. Hatzky, T. M. Tran, B. F. McMillan, O. Sauter, K. Appert, Y. Idomura and L. Villard, Comp. Phys. Comm. 177, 409 (2007).ADSGoogle Scholar
  59. [59]
    T. Gorler, Ph. D. Thesis, Universitat Ulm, 2009.Google Scholar
  60. [60]
    J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003).ADSMathSciNetGoogle Scholar
  61. [61]
    M. Kotschenreuther, G. Rewoldt and W.M. Tang, Comput. Phys. Commun. 88, 128 (1995).ADSGoogle Scholar
  62. [62]
    J. Candy, R. E. Waltz and W. Dorland, Phys. Plasmas 11, L25 (2004).Google Scholar
  63. [63]
    Z. Lin, S. Ethier, T. S. Hahm and W. M. Tang, Plasma Sci. Technol. 14, 1125 (2012).ADSGoogle Scholar
  64. [64]
    R. E. Waltz and J. Candy, Phys. Plasmas 12, 072303 (2005).ADSGoogle Scholar
  65. [65]
    J. M. Kwon, S. Yi, T. Rhee, P. H. Diamond, K. Miki, T. S. Hahm, J. Y. Kim, O. D. Gurcan and C. McDevitt, Nucl. Fusion 52, 013004 (2012).ADSGoogle Scholar
  66. [66]
    S. Yi, J. M. Kwon, P. H. Diamond and T. S. Hahm, Phys. Plasmas 21, 092509 (2014).ADSGoogle Scholar
  67. [67]
    S. Yi, J. M. Kwon, P. H. Diamond and T. S. Hahm, Nucl. Fusion 55, 092002 (2015).ADSGoogle Scholar
  68. [68]
    P. Mantica et al., Phys. Rev. Lett. 107, 135004 (2011).ADSGoogle Scholar
  69. [69]
    J. W. Hughes, D. A. Mossessian, A. E. Hubbard, B. LaBombard and E. S. Marmar, Phys. Plasmas 9, 3019 (2002).ADSGoogle Scholar
  70. [70]
    J. G. Cordey et al., Plasma Phys. Control. Fusion 36, A267 (1994).ADSGoogle Scholar
  71. [71]
    S. V. Neudatchin, T. Takizuka, H. Shirai, T. Fujita, A. Isayama, Y. Kamada, Y. Koide, T. Suzuki and S. Takeji, Plasma Phys. Control. Fusion 44, A383 (2002).ADSGoogle Scholar
  72. [72]
    B. B. Kadomtsev, Plasma Phys. Control. Fusion 34, 1931 (1992).ADSGoogle Scholar
  73. [73]
    Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang and P. H. Diamond, Phys. Rev. Lett. 83, 3645 (1999).ADSGoogle Scholar
  74. [74]
    B. LaBombard et al. and the Alcator Group, Nucl. Fusion 44, 1047 (2004).ADSGoogle Scholar
  75. [75]
    G. Rewoldt and W. M. Tang, Phys. Fluids B 2, 318 (1990).ADSGoogle Scholar
  76. [76]
    K. H. Burrell, Phys. Plasmas 4, 1499 (1997).ADSMathSciNetGoogle Scholar
  77. [77]
    W. X. Wang, T. S. Hahm, W. W. Lee, G. Rewoldt, J. Manickam and W. M. Tang, Phys. Plasmas 14, 072306 (2007).ADSGoogle Scholar
  78. [78]
    T. S. Hahm and K. H. Burrell, Phys. Plasmas 2, 1648 (1995).ADSGoogle Scholar
  79. [79]
    M. Yagi, T. Ueda, S-I. Itoh, M. Azumi, K. Itoh, P. H. Diamond and T. S. Hahm, Plasma Phys. Control. Fusion 48, A409 (2006).Google Scholar
  80. [80]
    W. Deng and Z. Lin, Phys. Plasmas 16, 102503 (2009).ADSGoogle Scholar
  81. [81]
    C. H. Ma, X. Q. Xu, P. W. Xi and T. Y. Xia, Phys. Plasmas 22, 010702 (2015).Google Scholar
  82. [82]
    A. Ishizawa and N. Nakajima, Phys. Plasmas 14, 040702 (2007).Google Scholar
  83. [83]
    A. Ishizawa and N. Nakajima, Nucl. Fusion 49, 055015 (2009).ADSGoogle Scholar
  84. [84]
    E. Poli, A. Bottino and A. G. Peeters, Nucl. Fusion 49, 075010 (2009).ADSGoogle Scholar
  85. [85]
    E. Poli, A. Bottino, W. A. Hornsby, A. G. Peeters, T. Ribeiro, B. D. Scott and M. Siccinio, Plasma Phys. Control. Fusion 52, 124021 (2010).ADSGoogle Scholar
  86. [86]
    K. Ida et al. and LHD Experimental Group, Phys. Rev. Lett. 88, 015002 (2001).Google Scholar
  87. [87]
    M. J. Choi, J. Kim, J-M. Kwon, H. K. Park, Y. In, W. Lee, K. D. Lee, G. S. Yun, J. Lee, M. Kim, W-H. Ko, J. H. Lee, Y. S. Park, Y-S. Na, N. C. Luhmann Jr. and B. H. Park, Nucl. Fusion 57, 126058 (2017).ADSGoogle Scholar
  88. [88]
    K. Ida, T. Kobayashi, M. Ono, T. E. Evans, G. R. Mc- Kee and M. E. Austin, Phys. Rev. Lett. 120, 245001 (2018).ADSGoogle Scholar
  89. [89]
    M. Jiang, Y. Xu, W. Chen, X. T. Ding, Z. B. Shi, W. L. Zhong, X. Q. Ji, P. W. Shi, J. Q. Li, Z. C. Yang, B. S. Yuan, Y. Liu, Q. W. Yang, M. Xu and HL-2A team, submitted to Phys. Rev. Lett. (2018).Google Scholar
  90. [90]
    E. J. Synakowski et al., Nucl. Fusion 39, 1733 (1999).ADSGoogle Scholar
  91. [91]
    E. Mazzucato et al., Phys. Rev. Lett. 77, 3145 (1996).ADSGoogle Scholar
  92. [92]
    G. R. McKee, R. J. Fonck, D. K. Gupta, D. J. Schlossberg, M. W. Shafer, R. L. Boivin, W. Solomon, Plasma Fusion Res. 2, S1025 (2007).Google Scholar
  93. [93]
    T. Estrada, C. Hidalgo and T. Happel, Nucl. Fusion 51, 032001 (2011).ADSGoogle Scholar
  94. [94]
    P.H. Diamond et al., presented in 6th Asia-Pacific Transport Working Group Meeting (Seoul, Korea, 2016)Google Scholar
  95. [95]
    G. K. Zipf, Human Behavior and the Principle of Least Effort (Cambridge, Massachusetts: Addison-Wesley, 1949).Google Scholar
  96. [96]
    H. E. Hurst, Trans. Am. Soc. Civil Eng. 116, 770 (1951).Google Scholar
  97. [97]
    H. E. Hurst, Proc. Inst. ivil Eng., Part 1, 519 (1956).Google Scholar
  98. [98]
    H. E. Hurst, R. P. Black and Y. M. Simaika, Long-Term Storage, and Experimental Study (London, Constable, 1965).Google Scholar
  99. [99]
    B. B. Mandelbrot, The Fractal Geometry of Nature, (Freeman, New York, 1983).Google Scholar
  100. [100]
    P. Bak, C. Tang and K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987).ADSGoogle Scholar
  101. [101]
    P.H. Diamond et al., presented in 9th Festival de Theorie (Aix-en-Provence, France, 2017)Google Scholar
  102. [102]
    B. B. Mandelbrot and J. R. Wallis, Water Resources Res. 4, 909 (1968).ADSGoogle Scholar
  103. [103]
    G. Boffetta, A. Mazzino and A. Vulpiani, J. Phys. A 41, 363001 (2008)MathSciNetGoogle Scholar
  104. [104]
    E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).ADSGoogle Scholar
  105. [105]
    L. P. Kadanoff, S. R. Nagel, L. Wu and S. Zhou, Phys. Rev. A 39, 6524 (1989).ADSGoogle Scholar
  106. [106]
    D. E. Newman, B. A. Carreras, P. H. Diamond and T. S. Hahm, Phys. Plasmas 3, 1858 (1996).ADSGoogle Scholar
  107. [107]
    I. Gruzinov, P. H. Diamond and M. N. Rosenbluth, Phys. Rev. Lett. 89, 255001 (2002).ADSGoogle Scholar
  108. [108]
    I. Gruzinov, P. H. Diamond and M. N. Rosenbluth, Phys. Plasmas 10, 569 (2003).ADSGoogle Scholar
  109. [109]
    T. Hwa and M. Kardar, Phys. Rev. A 45, 7002 (1992).ADSGoogle Scholar
  110. [110]
    P. H. Diamond and T. S. Hahm, Phys. Plasmas 2, 3640 (1995).ADSGoogle Scholar
  111. [111]
    D. Shvarts, U. Alon, D. Ofer, R. L. McCrory and C. P. Verdon, Phys. Plasmas 2, 2465 (1995).ADSGoogle Scholar
  112. [112]
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).ADSGoogle Scholar
  113. [113]
    Y. Kosuga, P. H. Diamond, G. Dif-Pradalier and O. D. Gurcan, Phys. Plasmas 21, 055701 (2014).ADSGoogle Scholar
  114. [114]
    Y. Kosuga, P. H. Diamond and O. D. Gurcan, Phys. Rev. Lett. 110, 105002 (2013).ADSGoogle Scholar
  115. [115]
    L. Gil and D. Sornette, Phys. Rev. Lett. 76, 3991 (1996).ADSGoogle Scholar
  116. [116]
    K. Barada, T. L. Rhodes, K. H. Burrell, L. Zeng, L. Bardoczi, Xi Chen, C. M. Muscatello and W. A. Peebles, Phys. Rev. Lett. 120, 135002 (2018).Google Scholar
  117. [117]
    V. B. Lebedev and P. H. Diamond, Phys. Plasmas 4, 1087 (1997).ADSMathSciNetGoogle Scholar
  118. [118]
    T. Rhee, J. M. Kwon, P. H. Diamond and W. W. Xiao, Phys. Plasmas 19, 022505 (2012).ADSGoogle Scholar
  119. [119]
    B. A. Carreras, D. Newman, E. Lynch and P. H. Diamond, Phys. Plasmas 3, 2903 (1996).ADSGoogle Scholar
  120. [120]
    X. Garbet and R. E. Waltz, Phys. Plasmas 5, 2836 (1998).ADSGoogle Scholar
  121. [121]
    X. Garbet, Y. Sarazin, P. Beyer, P. Ghendrih, R. E. Waltz, M. Ottaviani and S. Benkadda, Nucl. Fusion 39, 2063 (1999).ADSGoogle Scholar
  122. [122]
    Y. Sarazin and Ph. Ghendrih, Phys. Plasmas 5, 4214 (1998).MathSciNetGoogle Scholar
  123. [123]
    P. Beyer, S. Benkadda, X. Garbet and P. H. Diamond, Phys. Rev. Lett. 85, 4892 (2000).ADSGoogle Scholar
  124. [124]
    E-J. Kim and P. H. Diamond, Phys. Rev. Lett. 22, 225002 (2002).Google Scholar
  125. [125]
    L. Dan, Private Communications (2000).Google Scholar
  126. [126]
    Y. Idomura, H. Urano, N. Aiba and S. Tokuda, Nucl. Fusion 49, 065029 (2009).ADSGoogle Scholar
  127. [127]
    V. Grandgirard et al., Plasma Phys. Control. Fusion 49, B173 (2007).ADSGoogle Scholar
  128. [128]
    J. A. Heikkinen, S. J. Janhunen, T. P. Kiviniemi and F. Ogando, J. Comp. Phys. 227, 5582 (2008).ADSGoogle Scholar
  129. [129]
    C. S. Chang, S. Ku, P. H. Diamond, Z. Lin, S. Parker, T. S. Hahm and N. Samatova, Phys. Plasmas 16, 056108 (2009).ADSGoogle Scholar
  130. [130]
    Y. Sarazin et al., Nucl. Fusion 51, 103023 (2011).ADSGoogle Scholar
  131. [131]
    Y. Sarazin, V. Grandgirard, J. Abiteboul, S. Allfrey, X. Garbet, Ph. Ghendrih, G. Latu, A. Strugarek and G. Dif-Pradalier, Nucl. Fusion 50, 054004 (2010).Google Scholar
  132. [132]
    E. Mazzucato and R. Nazikian, Phys. Rev. Lett. 71, 1840 (1993).ADSGoogle Scholar
  133. [133]
    R. J. Fonck, G. Cosby, R. D. Durst, S. F. Paul, N. Bretz, S. Scott, E. Synakowski and G. Taylor, Phys. Rev. Lett. 70, 3736 (1993).ADSGoogle Scholar
  134. [134]
    P. Hennequin et al. and the ASDEX Upgrade Team, in 42nd EPS Conference on Plasma Physics, I1 (2015), p. 102.Google Scholar
  135. [135]
    G. Dif-Pradalier, G. Hornung, X. Garbet, Ph. Ghendrih, V. Grandgirard, G. Latu and Y. Sarazin, Nucl. Fusion 57, 066026 (2017).Google Scholar
  136. [136]
    Y. Xiao and Z. Lin, Phys. Rev. Lett. 103, 085004 (2009).ADSGoogle Scholar
  137. [137]
    L. Qi, J. M. Kwon, T. S. Hahm and S. Yi, Nucl. Fusion 57, 124002 (2017).ADSGoogle Scholar
  138. [138]
    S. Ku et al., Nucl. Fusion 52, 063013 (2012).ADSGoogle Scholar
  139. [139]
    P. H. Diamond, C. J. McDevitt, O. D. Gurcan, T. S. Hahm and V. Naulin, Phys. Plasmas 15, 012303 (2008).ADSGoogle Scholar
  140. [140]
    P. H. Diamond, C. J. McDevitt, O. D. Gurcan, T. S. Hahm, W. X. Wang, E. S. Yoon, I. Holod, Z. Lin, V. Naulin and R. Singh, Nucl. Fusion 49, 045002 (2009).ADSGoogle Scholar
  141. [141]
    O. D. Gurcan, P. H. Diamond and T. S. Hahm, Phys. Plasmas 14, 055902 (2007).ADSGoogle Scholar
  142. [142]
    Y. Kosuga, P. H. Diamond and O. D. Gurcan, Phys. Plasmas 17, 102313 (2010).ADSGoogle Scholar
  143. [143]
    J. E. Rice et al., Phys. Rev. Lett. 106, 215001 (2011).ADSGoogle Scholar
  144. [144]
    W. M. Solomon et al., Phys. Plasmas 17, 056108 (2010).ADSGoogle Scholar
  145. [145]
    F. Hariri, V. Naulin, J. Juul Rasmussen, G. S. Xu and N. Yan, Phys. Plasmas 23, 052512 (2016).ADSGoogle Scholar
  146. [146]
    M. Kikuchi and M. Azumi, Rev. Mod. Phys. 84, 1807 (2012).ADSGoogle Scholar
  147. [147]
    K. Imadera, J. Q. Li and Y. Kishimoto, in Proc. 25th Int. Conf. on Fusion Energy (2016), p. TH/P3-3.Google Scholar
  148. [148]
    Y. Kishimoto, K. Imadera and W. Wang, Private Communications (2017)Google Scholar
  149. [149]
    W. Wang, Y. Kishimoto and K. Imadera, Private Communications (to be submitted).Google Scholar
  150. [150]
    K. Ida et al., Nucl. Fusion 55, 013022 (2015).ADSGoogle Scholar
  151. [151]
    B. A. Carreras et al., Phys. Plasmas 5, 3632 (1998).ADSGoogle Scholar
  152. [152]
    P. A. Politzer, Phys. Rev. Lett 84, 1192 (2000).ADSGoogle Scholar
  153. [153]
    P. A. Politzer, M. E. Austin, M. Gilmore, G. R. McKee, T. L. Rhodes, C. X. Yu, E. J. Doyle, T. E. Evans and R. A. Moyere, Phys. Plasmas 9, 1962 (2002).ADSGoogle Scholar
  154. [154]
    M. J. Choi, M. H. Woo, Jae-Min Kwon, S. Ko, Hogun Jhang, H. K. Park, T. S. Hahm, J. Lee, M. Kim, G. S. Yun, arXiv:1806.04947v2 (2018).Google Scholar
  155. [155]
    S. J. Zweben et al., Phys. Plasmas 9, 1981 (2002).ADSGoogle Scholar
  156. [156]
    J. A. Boedo et al., Phys. Plasmas 10, 1670 (2003).ADSGoogle Scholar
  157. [157]
    S. J. Zweben et al. and the NSTX Team, Nucl. Fusion 44, 134 (2004).ADSGoogle Scholar
  158. [158]
    J. A. Boedo et al. and NSTX Team, Phys. Plasmas 21, 042309 (2014).ADSGoogle Scholar
  159. [159]
    Y. H. Xu, S. Jachmich, R. R. Weynants, A. Huber, B. Unterberg and U. Samm, Phys. Plasmas 11, 5413 (2004).ADSGoogle Scholar
  160. [160]
    B. D. Scott, Contrib. Plasma Phys. 46, 714 (2006).ADSGoogle Scholar
  161. [161]
    P. Manz, T. T. Ribeiro, B. D. Scott, G. Birkenmeier, D. Carralero, G. Fuchert, S. H. Muller, H. W. Muller, U. Stroth and E. Wolfrum, Phys. Plasmas 22, 022308 (2015).ADSGoogle Scholar
  162. [162]
    B. D. Scott, Phys. Plasmas 12, 082305 (2005).ADSGoogle Scholar
  163. [163]
    K. W. Gentle, R. V. Bravenec, G. Cima, H. Gasquet, G. A. Hallock, P. E. Phillips, D. W. Ross, W. L. Rowan, A. J. Wootton, T. P. Crowley, J. Heard, A. Ouroua, P. M. Schoch and C. Watts, Phys. Plasmas 2, 2292 (1995).ADSGoogle Scholar
  164. [164]
    K. W. Gentle, W. L. Rowan, R. V. Bravenec, G. Cima, T. P. Crowley, H. Gasquet, G. A. Hallock, J. Heard, A. Ouroua, P. E. Phillips, D. W. Ross, P. M. Schoch and C. Watts, Phys. Rev. Lett. 74, 3620 (1995).ADSGoogle Scholar
  165. [165]
    J. D. Callen and M. W. Kissick, Plasma Phys. Control. Fusion 39, B173 (1997).Google Scholar
  166. [166]
    B. P. van Milligen et al., Nucl. Fusion 42, 787 (2002).ADSGoogle Scholar
  167. [167]
    P. Mantica et al. and JET EFDA Contributors, in Proceedings of the 19th International Conference on Fusion Energy, Lyon, 2002 (IAEA, Vienna, 2002), p. EX/P1- 04.Google Scholar
  168. [168]
    B. Van Compernolle, G. J. Morales, J. E. Maggs and R. D. Sydora, Phys. Rev. E 91, 031102 (2015).ADSGoogle Scholar
  169. [169]
    G. Dif-Pradalier, P. H. Diamond, V. Grandgirard, Y. Sarazin, J. Abiteboul, X. Garbet, Ph. Ghendrih, A. Strugarek, S. Ku and C. S. Chang, Phys. Rev. E 82, 025401(R) (2010).ADSGoogle Scholar
  170. [170]
    G. M. Zaslavsky, Hamiltonian Chaos and Fractal Dynamics (Oxford University Press, 2005).Google Scholar
  171. [171]
    T. H. Solomon, E. R. Weeks and H. L. Swinney, Phys. Rev. Lett. 71, 3975 (1993).ADSGoogle Scholar
  172. [172]
    G. M. Zaslavsky, M. Edelman, H. Weitzner, B. Carreras, G. McKee, R. Bravenec and R. Fonck, Phys. Plasmas 7, 3691 (2000).ADSGoogle Scholar
  173. [173]
    G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics (Cambridge University Press, 2006).Google Scholar
  174. [174]
    G. K. Batchelor, H. K. Moffatt and M. G. Worster, Perspectives in Fluid Dynamics (Cambridge University Press, 2002).Google Scholar
  175. [175]
    R. B. Wood and M. E. McIntyre, J. Atmospheric Sci. 67, 1261 (2010).ADSGoogle Scholar
  176. [176]
    O. D. Gurcan and P. H. Diamond, J. Phys. A 48, 293001 (2015).MathSciNetGoogle Scholar
  177. [177]
    G. I. Taylor, Philos. Trans. Royal Soc. A 215, 1 (1915).ADSGoogle Scholar
  178. [178]
    D. G. Dritschel and M. E. McIntyre, J. Atmospheric Sci. 65, 855 (2008).ADSGoogle Scholar
  179. [179]
    G. Dif-Pradalier et al., Phys. Rev. Lett. 114, 085004 (2015).ADSGoogle Scholar
  180. [180]
    N. J. Balmforth, S. G. L. Smith and W. R. Young, J. Fluid Mech. 355, 329 (1998).ADSMathSciNetGoogle Scholar
  181. [181]
    A. Ashourvan and P. H. Diamond, Phys. Rev. E 94, 051202(R) (2016).ADSGoogle Scholar
  182. [182]
    A. Ashourvan and P. H. Diamond, Phys. Plasmas 24, 012305 (2017).ADSGoogle Scholar
  183. [183]
    P. B. Rhines, J. Fluid Mech. 69, 417 (1975).ADSGoogle Scholar
  184. [184]
    W. X. Guo et al., presented in 8th Asia-Pacific Transport Working Group Meeting (Leshan, China, 2018).Google Scholar
  185. [185]
    G. Dif-Pradalier et al., presented in 8th Asia-Pacific Transport Working Group Meeting (Leshan, China, 2018).Google Scholar
  186. [186]
    O. D. Gurcan, P. H. Diamond, X. Garbet, V. Berionni, G. Dif-Pradalier, P. Hennequin, P. Morel, Y. Kosuga and L. Vermare, Phys. Plasmas 20, 022307 (2013).ADSGoogle Scholar
  187. [187]
    M. R. Flynn, A. R. Kasimov, J. C. Nave, R. R. Rosales and B. Seibold, Phys. Rev. E 79, 056113 (2009).ADSMathSciNetGoogle Scholar
  188. [188]
    J. B. Taylor, Rev. Mod. Phys. 58, 741 (1986).ADSGoogle Scholar
  189. [189]
    S. Galtier, Introduction to Modern Magnetohydrodynamics (Cambridge University Press, 2016).Google Scholar
  190. [190]
    U. Frisch, M. Lesieur and P. L. Sulem, Phys. Rev. Lett. 37, 895 (1976).ADSGoogle Scholar
  191. [191]
    A. Pouquet, U. Frisch and J. Leorat, J. Fluid Mech. 77, 321 (1976).ADSGoogle Scholar
  192. [192]
    A. H. Boozer, J. Plasma Phys. 35, 133 (1986).ADSGoogle Scholar
  193. [193]
    P. H. Diamond and M. Malkov, Phys. Plasmas 10, 2322 (2003).ADSMathSciNetGoogle Scholar
  194. [194]
    J. A. Holmes, B. A. Carreras, P. H. Diamond and V. E. Lynch, Phys. Fluids 31, 1166 (1988).ADSGoogle Scholar
  195. [195]
    I. H. Hutchinson, M. Malacarne, P. Noonan and D. Brotherton-Ratcliffe, Nucl. Fusion 24, 59 (1984).Google Scholar
  196. [196]
    R. Lorenzini et al. and RFX-mod team and collaborators, Nat. Phys. 5, 570 (2009).Google Scholar
  197. [197]
    F. Zonca, S. Briguglio, L. Chen, G. Fogaccia, T. S. Hahm, A. V. Milovanov and G. Vlad, Plasma Phys. Control. Fusion 48, B15 (2006).ADSGoogle Scholar
  198. [198]
    Z. Guo, L. Chen and F. Zonca, Phys. Rev. Lett. 103, 055002 (2009).ADSGoogle Scholar
  199. [199]
    F. Zonca, L. Chen, S. Briguglio, G. Fogaccia, A. V. Milovanov, Z Qiu, G. Vlad and X. Wang, Plasma Phys. Control. Fusion 57, 014024 (2015).ADSGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of Nuclear EngineeringSeoul National UniversitySeoulKorea
  2. 2.Center for Astrophysics and Space ScienceUniversity of California San DiegoSan DiegoUSA
  3. 3.Center for Fusion SciencesSouthwestern Institute of PhysicsChengduChina

Personalised recommendations