Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 6, pp 712–735 | Cite as

Progress of the KSTAR Research Program Exploring the Advanced High Performance and Steady-State Plasma Operations

  • Yeong-Kook Oh
  • Siwoo Yoon
  • Young-Mu Jeon
  • Won-Ha Ko
  • Suk-Ho Hong
  • Hyung-Ho Lee
  • Jae-Min Kwon
  • Minjun Choi
  • Byung-Ho Park
  • Jong-Gu Kwak
  • Woong-Chae Kim
  • Yong-Un Nam
  • Sonjong Wang
  • Jin-Hyun Jeong
  • Kap-rae Park
  • Yaung-Soo Kim
  • Yongkyoon In
  • Hyeon K. Park
  • Gunsu Yun
  • Wonho Choe
  • Young-Chul Ghim
  • Yong-Su Na
  • Y. S. Hwang
Review Articles
  • 74 Downloads
Part of the following topical collections:
  1. JKPS 50th Anniversary Reviews

Abstract

Korea Superconducting Tokamak Advanced Research (KSTAR) program is strongly focused on solving the scientific and technological issues in steady-state high performance plasma operation in preparation for ITER operation as well as the design basis for DEMO. In this regards, KSTAR has made significant advances in developing long pulse and high performance plasma scenarios utilizing the advantage of the fully superconducting tokamak. Ten-year of KSTAR operation showed the outstanding progress in the plasma control extending the operation window of the plasma discharges achieving the H-mode up to 1 MA in plasma current, up to 72 s in flat top duration, and up to 2.16 in elongation. In addition to the long pulse discharge, high performance discharges with high betas (βN ~ 3) could be achieved in the broad range of edge safety factor (q95) without external error field correction. The unique features of the KSTAR device (magnetic accuracy with extremely low error fields, steady-state capable heating systems, in-vessel control coils, and advanced imaging and profile diagnostics) has been fully exploited to explore the unveiled physics as well as to exploring the systematic solution for suppression of edge localized mode (ELM) crash. Achieved examples are the record long pulse of H-mode operation without an ELM crash (~ 30 s up to date), and progress in the fundamental transport physics through systematic study using these unique capabilities. Based on the previous research results, intensive research will be followed to explore the advanced high beta operation (βN ~ 4) with fully suppressed harmful MHD instabilities aiming the integrated solution for DEMO. In this regards, an additional current drive systems and in-vessel structures will be upgraded.

Keywords

KSTAR Plasma Fusion Steady-state Edge Localized Mode 

Notes

Acknowledgments

The authors would like to acknowledge the work and contributions of the entire KSTAR team and all research collaborators from Korea domestics and from the foreign collaboration institutions. This work was supported by the Ministry of Science and ICT (MSIT) of Korea under the KSTAR research project (NFRI) and was supported by the National Research Foundation of Korea (NRF) under the National R&D Programs (No. 2014M1A7A1A03045368, 2014M1A7A1A03029881, 2014M1A7A1A03045374, 2014M1A7A1A03045092) and A3 Foresight program (No. 2012K2A2A6000443).

References

  1. [1]
    G. S. Lee et al., Nucl. Fusion 41, 1515 (2001).ADSGoogle Scholar
  2. [2]
    M. Kwon et al., Nucl. Fusion 51, 094006 (2011).ADSGoogle Scholar
  3. [3]
    Y. K. Oh et al., Fusion Eng. Des. 84, 344 (2009).Google Scholar
  4. [4]
    S. W. Yoon et al., Nucl. Fusion 51, 113009 (2011).ADSGoogle Scholar
  5. [5]
    Y. In et al., Nucl. Fusion 55, 043004 (2015).ADSGoogle Scholar
  6. [6]
    Y. In et al., Nucl. Fusion 57, 116054 (2017).ADSGoogle Scholar
  7. [7]
    Y. M. Jeon et al., in 16th Int’l Workshop on H-mode Physics and Transport Barriers (St. Petersburg, Russia, Sept. 2017).Google Scholar
  8. [8]
    A. M. Garofalo et al., Nucl. Fusion 57, 076037 (2017).ADSGoogle Scholar
  9. [9]
    A. M. Garofalo et al., Nucl. Fusion 55, 123025 (2015).ADSGoogle Scholar
  10. [10]
    Y. Sakamoto et al., Nucl. Fusion 49, 095017 (2009).ADSGoogle Scholar
  11. [11]
    S. Morita et al., Plasma and Fusion Research 13, 3502046 (2018).ADSGoogle Scholar
  12. [12]
    K. J. Jung et al., Int’l J. Energy Research 42, 9 (2018).Google Scholar
  13. [13]
    K. Kim et al., Fusion Eng. Des. 88, 488 (2013).Google Scholar
  14. [14]
    K. Kim et al., Nucl. Fusion 55, 053027 (2015).ADSGoogle Scholar
  15. [15]
    Y. S. Park et al., Nucl. Fusion 53, 083029 (2013).ADSGoogle Scholar
  16. [16]
    Y. S. Park et al., in KSTAR conference (Daejeon, Korea, Feb. 2016).Google Scholar
  17. [17]
    A. C. Sips et al., Plasma Phys. Control. Fusion 44, B69 (2002).Google Scholar
  18. [18]
    Y. S. Na et al., Proc. IAEA TMSSO, Nara, Japan, May 2015.Google Scholar
  19. [19]
    J. Chung et al., Nucl. Fusion 58, 016019 (2018).ADSGoogle Scholar
  20. [20]
    K. Ida et al., Plasma Phys. Control. Fusion 60, 033001 (2018).ADSGoogle Scholar
  21. [21]
    R. J. Buttery et al., Physics of Plasma 19, 056111 (2012).ADSGoogle Scholar
  22. [22]
    Y. M. Jeon et al., Phys. Rev. Lett. 109, 035004 (2012).ADSGoogle Scholar
  23. [23]
    J-K. Park et al., Phys. Rev. Lett. 111, 095002 (2013).ADSGoogle Scholar
  24. [24]
    G. S. Yun et al., Physics of Plasma 19, 056114 (2012).ADSGoogle Scholar
  25. [25]
    Y. M. Jeon et al., in 26th IAEA Fusion Energy Conference (Kyoto, Japan, Oct. 2016).Google Scholar
  26. [26]
    J. Kim et al., Nucl. Fusion 57, 022001 (2017).ADSGoogle Scholar
  27. [27]
    Y. In et al., presentation in APS-DPP 2017.Google Scholar
  28. [28]
    J. Lee et al., Phys. Rev. Lett. 117, 075001 (2016).ADSGoogle Scholar
  29. [29]
    S-H. Hong et al., Nucl. Fusion 51, 103027 (2011).ADSGoogle Scholar
  30. [30]
    Y. D. Bae et al., Nucl. Fusion 43, 805 (2003).ADSGoogle Scholar
  31. [31]
    K. P. Kim et al., Fusion Eng. Des. 86, 671 (2011).Google Scholar
  32. [32]
    G. Federici et al., Nucl. Fusion 41, 1967 (2001).ADSGoogle Scholar
  33. [33]
    J. Roth et al., Plasma Phys. Control. Fusion 50, 103001 (2008).ADSGoogle Scholar
  34. [34]
    J-G. Bak et al., 15th ITPA meeting on SOL/divertor physics (Helsinki, Finland, May 2011).Google Scholar
  35. [35]
    ITER newsline, http://www.iter.org/newsline/274/ 1639.Google Scholar
  36. [36]
    C. S. Kang et al., Rev. Sci. Instrum. 87, 083508 (2016).ADSGoogle Scholar
  37. [37]
    R. Dejarnac et al., 21st ITPA meeting on SOL/divertor physics (Princeton, USA, Jun. 2015).Google Scholar
  38. [38]
    R. A. Pitts et al., 22nd PSI conference (Rome, Italy, May 2016).Google Scholar
  39. [39]
    T. E. Evans et al., Nucl. Fusion 45, 595 (2005).ADSGoogle Scholar
  40. [40]
    W. Suttrop et al., Phys. Rev. Lett. 106, 225004 (2011).ADSGoogle Scholar
  41. [41]
    H. H. Lee et al., Nucl. Materials and Energy 12, 541 (2017).Google Scholar
  42. [42]
    K. Kim et al., Phys. Plasmas 24, 052506 (2017).ADSGoogle Scholar
  43. [43]
    J. E. Rice et al., Nucl. Fusion 47, 1618 (2007).ADSGoogle Scholar
  44. [44]
    Y. J. Shi et al., Nucl. Fusion 56, 016014 (2016).ADSGoogle Scholar
  45. [45]
    D. H. Na et al., Nucl. Fusion 56, 036011 (2016).ADSGoogle Scholar
  46. [46]
    Y. J. Shi et al., Nucl. Fusion 57, 066040 (2017).ADSGoogle Scholar
  47. [47]
    J. W. Yoo et al., Phys. Plasmas 24, 072510 (2017).ADSGoogle Scholar
  48. [48]
    S. G. Lee et al., Phys. Plasmas 25, 044502 (2018).ADSGoogle Scholar
  49. [49]
    J. Seol et al., Phys. Rev. Lett. 109, 195003 (2012).ADSGoogle Scholar
  50. [50]
    D. H. Na et al., Nucl. Fusion 57, 126008 (2017).ADSGoogle Scholar
  51. [51]
    H. Arnichand et al., Nucl. Fusion 54, 123017 (2014).ADSGoogle Scholar
  52. [52]
    W. Lee et al., Nucl. Fusion 46, 023012 (2014).Google Scholar
  53. [53]
    J. A. Lee et al., Phys. Plasmas 25, 022513 (2018).ADSGoogle Scholar
  54. [54]
    P. H. Diamond et al., Phys. Plasmas 2, 3640 (1995).ADSGoogle Scholar
  55. [55]
    G. Dif-Pradalier et al., Nucl. Fusion 57, 066026 (2017).ADSGoogle Scholar
  56. [56]
    M. J. Choi et al., arXiv:1806. 04947v2 (2018).Google Scholar
  57. [57]
    M. J. Choi et al., to be submitted to Phys. Rev. E (2018).Google Scholar
  58. [58]
    S. Tokunaga et al., Phys. Plasmas 19, 092303 (2012).ADSGoogle Scholar
  59. [59]
    M. J. Choi et al., Nucl. Fusion 57, 126058 (2017).ADSGoogle Scholar
  60. [60]
    S. Ku et al., Phys. Plasmas 25, 056107 (2018).ADSGoogle Scholar
  61. [61]
    J. M. Kwon et al., Phys. Plasmas 25, 052506 (2018).ADSGoogle Scholar
  62. [62]
    O. Katsuro-Hopkins et al., Nucl. Fusion 50, 025019 (2010).ADSGoogle Scholar
  63. [63]
    Y. S. Park et al., Physics of Plasmas 24, 012512 (2017).ADSGoogle Scholar
  64. [64]
    G. S. Yun et al., Rev. Sci. Inst. 81, 10D903 (2010).Google Scholar
  65. [65]
    G. S. Yun et al., Phys. Rev. Lett. 109, 145003 (2012).ADSGoogle Scholar
  66. [66]
    G. H. Choe et al., Nucl. Fusion 55, 013015 (2015).ADSGoogle Scholar
  67. [67]
    Y. B. Nam et al., Nucl. Fusion 58, 066009 (2018).ADSGoogle Scholar
  68. [68]
    H. P. Furth et al., Phys. Fluids 16, 1054 (1973).ADSGoogle Scholar
  69. [69]
    A. H. Glasser et al., Phys. Fluids 18, 875 (1975).ADSGoogle Scholar
  70. [70]
    Z. Chang et al., Phys. Rev. Lett. 74, 4663 (1995).ADSGoogle Scholar
  71. [71]
    R. Carrera et al., Phys. Fluids 29, 899 (1986).ADSGoogle Scholar
  72. [72]
    A. Pletzer et al., J. Comput. Phys. 115, 530 (1994).ADSMathSciNetGoogle Scholar
  73. [73]
    S. C. Jardin et al., J. Comput. Phys. 226, 2146 (2007).ADSMathSciNetGoogle Scholar
  74. [74]
    N. M. Ferraro et al., J. Comput. Phys. 228, 7742 (2009).ADSMathSciNetGoogle Scholar
  75. [75]
    J. W. Berkery et al., Phys. Rev. Lett. 104, 035003 (2010).ADSGoogle Scholar
  76. [76]
    S. A. Sabbagh et al., Nucl. Fusion 50, 025020 (2010).ADSGoogle Scholar
  77. [77]
    J. W. Berkery et al., Nucl. Fusion 55, 123007 (2015).ADSGoogle Scholar
  78. [78]
    H. Zohm, Phys. Plasmas 4, 3433 (1997).ADSGoogle Scholar
  79. [79]
    G. Gantenbein et al., Phys. Rev. Lett. 85, 1242 (2000).ADSGoogle Scholar
  80. [80]
    R. J. La Haye et al., Phys. Plasmas 9, 2051 (2002).ADSGoogle Scholar
  81. [81]
    C. C. Petty et al., Nucl. Fusion 44, 243 (2004).ADSGoogle Scholar
  82. [82]
    A. Isayama et al., Nucl. Fusion 43, 1272 (2003).ADSGoogle Scholar
  83. [83]
    A. Isayama et al., Nucl. Fusion 47, 773 (2007).ADSGoogle Scholar
  84. [84]
    H. Reimerdes et al., Phys. Rev. Lett. 88, 105005 (2002).ADSGoogle Scholar
  85. [85]
    E. Poli et al., Comput. Phys. Commun. 136, 90 (2001).ADSGoogle Scholar
  86. [86]
    J. G. Back et al., 45th EPS Conference on Plasma Physics (Parague, Czech, 2018).Google Scholar
  87. [87]
    C. E. Myers et al., 43th EPS Conference on Plasma Physics (Leuven, Belgium, 2016).Google Scholar
  88. [88]
    A. C. England et al., Plasma Sci. Technol. 15, 119 (2013).ADSGoogle Scholar
  89. [89]
    J. H. Lee et al., Rev. Sci. Instrum. 81, 063502 (2010).ADSGoogle Scholar
  90. [90]
    J. Chung, Rev. Sci. Instrum. Fusion Eng. Des. 89, 349 (2014).MathSciNetGoogle Scholar
  91. [91]
    S. G. Lee et al., Rev. Sci. Instrum. 79, 10F117 (2008).Google Scholar
  92. [92]
    J. G. Bak et al., in Proc. 37th EPS Conference on Plasma Physics (2010), p. 5.102.Google Scholar
  93. [93]
    J. G. Bak et al., Rev. Sci. Instrum. 82, 063504 (2011).ADSGoogle Scholar
  94. [94]
    J. G. Bak et al., in Proc. 43rd EPS Conference on Plasma Physics (2016), p. 4.036.Google Scholar
  95. [95]
    H. S. Kim et al., Fusion Eng. Des. 123, 641 (2017).Google Scholar
  96. [96]
    Y. U. Nam et al., Rev. Sci. Instrum. 79, 10E705 (2008).Google Scholar
  97. [97]
    Y. U. Nam et al., Fusion Sci. Technol. 55, 180 (2009).Google Scholar
  98. [98]
    K. C. Lee et al., Fusion Eng. Des. 113, 87 (2016).Google Scholar
  99. [99]
    J. H. Lee et al., Rev. Sci. Instrum. 85, 11D407 (2014).Google Scholar
  100. [100]
    J. H. Lee et al., J. Instrum. 12 C12035 (2017).Google Scholar
  101. [101]
    S. H. Jeong et al., Rev. Sci. Instrum. 74, 1433 (2003).ADSGoogle Scholar
  102. [102]
    Y. Kogi et al., Rev. Sci. Instrum. 79, 10F115 (2008).Google Scholar
  103. [103]
    S. H. Seo et al., J. Korean Phys. Soc. 65, 1299 (2014).ADSGoogle Scholar
  104. [104]
    S. H. Seo et al., Rev. Sci. Instrum. 84, 084702 (2013).ADSGoogle Scholar
  105. [105]
    W. H. Ko et al., Rev. Sci. Instrum. 85, 11E413 (2014).Google Scholar
  106. [106]
    S. G. Lee et al., Rev. Sci. Instrum. 87, 11E314 (2016).Google Scholar
  107. [107]
    S. G. Lee et al., Fusion Sci. Technol. 69, 555 (2016).Google Scholar
  108. [108]
    J. Chung et al., Rev. Sci. Instrum. 85, 11D827 (2014).Google Scholar
  109. [109]
    J. Ko et al., Fusion Eng. Des. 109, 742 (2016).Google Scholar
  110. [110]
    J. Ko et al., Rev. Sci. Instrum. 88, 063505 (2017).ADSGoogle Scholar
  111. [111]
    K. D. Lee et al., Rev. Sci. Instrum. 85, 11D858 (2014).Google Scholar
  112. [112]
    G. S. Yun et al., Rev. Sci. Instrum. 81, 10D930 (2010).Google Scholar
  113. [113]
    J. Lee et al., J. Instrum. 7, C01037 (2012).Google Scholar
  114. [114]
    G. S. Yun et al., Rev. Sci. Instrum. 85, 11D820 (2014).Google Scholar
  115. [115]
    M. J. Choi et al., Rev. Sci. Instrum. 87, 013506 (2016).ADSGoogle Scholar
  116. [116]
    W. Lee et al., Nucl. Fusion 54, 023012 (2014).ADSGoogle Scholar
  117. [117]
    Y. U. Nam et al., Rev. Sci. Instrum. 85, 11E434 (2014).Google Scholar
  118. [118]
    M. Lampert et al., Rev. Sci. Instrum. 86, 073501 (2015).ADSGoogle Scholar
  119. [119]
    J. Kim et al., 42nd EPS Conference on Plasma Physics (2015), p. P5.194.Google Scholar
  120. [120]
    H. K. Na et al., Fusion Eng. Des. 86, 66 (2011).Google Scholar
  121. [121]
    C. R. Seon et al., Rev. Sci. Instrum. 88, 083511 (2017).ADSGoogle Scholar
  122. [122]
    S. H. Lee et al., Rev. Sci. Instrum. 85, 11E827 (2014).Google Scholar
  123. [123]
    I. Song et al., Curr. Appl. Phys. 16, 1284 (2016).ADSGoogle Scholar
  124. [124]
    C. S. Kang et al., Rev. Sci. Instrum. 87, 083508 (2016).ADSGoogle Scholar
  125. [125]
    H. H. Lee et al., Nucl. Mater. Energy 12, 541 (2017).Google Scholar
  126. [126]
    H. S. Kim et al., Fusion Eng. Des. 109, 809 (2016).Google Scholar
  127. [127]
    J. G. Bak et al., Nucl. Mater. Energy 12, 1270 (2017).Google Scholar
  128. [128]
    J. Jang et al., Curr. Appl. Phys. 18, 461 (2018).ADSGoogle Scholar
  129. [129]
    D. C. Seo et al., Rev. Sci. Instrum. 81, 10E128 (2010).Google Scholar
  130. [130]
    J. Kim et al., Rev. Sci. Instrum. 83, 10D305 (2012).Google Scholar
  131. [131]
    Y. S. Lee et al., Fusion Eng. Technol. 60, 501 (2011).Google Scholar
  132. [132]
    A. C. England et al., Phys. Lett. A 375, 3095 (2011).ADSGoogle Scholar
  133. [133]
    M. S. Cheon et al., J. Instrum. 7, C05009 (2012).Google Scholar
  134. [134]
    S. H. Jeong et al., Rev. Sci. Instrum. 83, 02B102 (2012).Google Scholar
  135. [135]
    T. S. Kim et al., Rev. Sci. Instrum. 83, 02B112 (2012).Google Scholar
  136. [136]
    D. H. Chang et al., Fusion Eng. Des. 86, 244 (2011).Google Scholar
  137. [137]
    W. Cho et al., Fusion Eng. Des. 96, 425 (2015).Google Scholar
  138. [138]
    Y. S. Bae et al., J. Korean Phys. Soc. 51, 1313 (2007).Google Scholar
  139. [139]
    R. Ellis et al., in Proc. 26th Symposium on Fusion Science (2015), p. 1.Google Scholar
  140. [140]
    Y. D. Bae et al., Nucl. Fusion 43, 805 (2003).ADSGoogle Scholar
  141. [141]
    S. J. Wang et al., Fusion Eng. Des. 88, 129 (2013).Google Scholar
  142. [142]
    C. Gormezano et al., Plasma Phys. Control. Fusion 28, 1365 (1986).ADSGoogle Scholar
  143. [143]
    J. Hillairet et al., Nucl. Fusion 53, 073004 (2013).ADSGoogle Scholar
  144. [144]
    W. Hooke et al., Plasma Phys. Control. Fusion 26, 133 (1984).ADSGoogle Scholar
  145. [145]
    V. L. Vdovin et al., Plasma Phys. Rep. 39, 95 (2013).ADSGoogle Scholar
  146. [146]
    S. J. Wang et al., Nucl. Fusion 57, 046010 (2017).ADSGoogle Scholar
  147. [147]
    C. P. Moeller et al., in Proc. AIP Conf. (1994), p. 289.Google Scholar
  148. [148]
    H. H. Wi et al., Fusion Eng. Des. 126, 67 (2018).Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Yeong-Kook Oh
    • 1
  • Siwoo Yoon
    • 2
  • Young-Mu Jeon
    • 2
  • Won-Ha Ko
    • 2
  • Suk-Ho Hong
    • 2
  • Hyung-Ho Lee
    • 2
  • Jae-Min Kwon
    • 2
  • Minjun Choi
    • 2
  • Byung-Ho Park
    • 2
  • Jong-Gu Kwak
    • 2
  • Woong-Chae Kim
    • 2
  • Yong-Un Nam
    • 2
  • Sonjong Wang
    • 2
  • Jin-Hyun Jeong
    • 2
  • Kap-rae Park
    • 2
  • Yaung-Soo Kim
    • 2
  • Yongkyoon In
    • 3
  • Hyeon K. Park
    • 3
  • Gunsu Yun
    • 4
  • Wonho Choe
    • 5
  • Young-Chul Ghim
    • 5
  • Yong-Su Na
    • 6
  • Y. S. Hwang
    • 6
  1. 1.Korea and ITER OrganizationSt. Paul Lez DuranceFrance
  2. 2.National Fusion Research Institute (NFRI)DaejeonKorea
  3. 3.UNISTUlsanKorea
  4. 4.Pohang University of Science and Technology (POSTECH)GyungbukKorea
  5. 5.Korea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
  6. 6.Seoul National University (SNU)SeoulKorea

Personalised recommendations