Skip to main content
Log in

Adsorption Behavior of Gold Nanoparticles on Amino-terminated Micro Domains Fabricated on Quartz Substrate by Vacuum Ultra-violet Photolithography

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Immobilization of gold nanoparticles (AuNPs) onto quartz is of considerable interest in optoelectronic applications. In this paper, we demonstrated a linear arrangement of AuNPs by controlling the function and optical properties at the microstructure of a quartz surface through formation of a 3-aminopropyltriethoxysilane (APS) self-assembled monolayer and the subsequent vacuum ultraviolet lithography. Citrate-capped AuNPs have been arranged on an APS-terminated surface by electrostatic attraction and in a VUV irradiated area by electrostatic repulsion. In addition, the density of AuNPs on along the boundary of the linear feature was higher than that in the center during the initial stage of immersion. The density of AuNPs along the linear feature became uniform over the entire surface with increasing immobilization time. These results induced the electrostatic interaction of negatively charged AuNPs on the interface between differently charged surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha and H. A. Atwater, Adv. Mater. 13, 1501 (2001).

    Article  Google Scholar 

  2. O. P. Khatri, K. Adachi, K. Murase, K. Okazaki, T. Torimoto, N. Tanaka, S. Kuwabata and H. Sugimura, Langmuir 24, 7785 (2008).

    Article  Google Scholar 

  3. C. F. Chen, S. D. Tzeng, M. H. Lin and S. Gwo, Langmuir 22, 7819 (2006).

    Article  Google Scholar 

  4. J-Y. Kim, S-J. Oh, H-S. Park, M-W. Kim, Y-H. Cho and M-K. Kwon, J. Korean Phys. Soc. 70, 517 (2017).

    Article  ADS  Google Scholar 

  5. N. Nedyalkov, T. Sakai, T. Miyanishi and M. Obara, Appl. Phys. Lett. 90, 123106 (2007).

    Article  ADS  Google Scholar 

  6. N. Nath and A. Chilkoti, Anal. Chem. 74, 504 (2002).

    Article  Google Scholar 

  7. T. Atay, J. H. Song and V. Nurmikko, Nano Lett. 4, 1627 (2004).

    Article  ADS  Google Scholar 

  8. S. J. Barrow, A. M. Funston, D. E. Gomez, T. J. Davis and P. Mulvaney, Nano Lett. 11, 4180 (2011).

    Article  ADS  Google Scholar 

  9. K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sakai and H. Misawa, J. Am. Chem. Soc. 130, 6928 (2008).

    Article  Google Scholar 

  10. K. Sugawa, T. Akiyama, H. Kawazumi and S. Yamada, Langmuir 25, 3887 (2009).

    Article  Google Scholar 

  11. J. Yang, T. Ichii, K. Murase and H. Sugimura, Langmuir 12, 7579 (2012).

    Article  Google Scholar 

  12. K. Ueno, S. Takabatake, Y. Nishijima, V. Mizeikis, Y. Yokota and H. Missawa, J. Phys. Chem. Lett. 1, 657 (2010).

    Article  Google Scholar 

  13. S. K. Ghosh and T. Pal, Chem. Rev. 107, 4797 (2007).

    Article  Google Scholar 

  14. W. M. Wang, R. M. Stoltenberg, S. Liu and Z. Bao, ACS Nano 2, 2135 (2008).

    Article  Google Scholar 

  15. L. C. Ma, R. Subramanian, H. W. Huang, V. Ray, C. U. Kim and S. J. Koh, Nano Lett. 7, 439 (2007).

    Article  ADS  Google Scholar 

  16. M. C. Daniel and D. Astruc, Chem. Rev. 104, 293 (2004).

    Article  Google Scholar 

  17. D. Aouters, S. Hoeppener and U. S. Schubert, Angew. Chem. Int. Ed. 48, 1732 (2009).

    Article  Google Scholar 

  18. S. Liu, R. Maoz and J. Sagiv, Nano Lett. 4, 845 (2004).

    Article  ADS  Google Scholar 

  19. O. P. Khatri, J. Han, T. Ichii, K. Murase and H. Sugimura, J. Phys. Chem. C 112, 16182 (2008).

    Article  Google Scholar 

  20. O. P. Khatri, K. Murase and H. Sugimura, Langmuir 24, 3787 (2008).

    Article  Google Scholar 

  21. H. X. He, H. Zhang, Q. G. Li, T. Zhu, S. F. Y. Li and Z. F. Liu, Langmuir 16, 3846 (2000).

    Article  Google Scholar 

  22. X. Ling, X. Zhu, J. Zhang, T. Zhu, M. Liu, L. Tong and Z. Liu, J. Phys. Chem. B 109, 2657 (2005).

    Article  Google Scholar 

  23. J. Yang, T. Ichii, K. Murase and H. Sugimura, Appl. Phys. Express 5, 025202 (2012).

    Article  ADS  Google Scholar 

  24. D. Dahlhaus, S. Franzka, E. Hasselbrink and N. Hartmann, Nano Lett. 6, 2358 (2006).

    Article  ADS  Google Scholar 

  25. M. Peter, X. M. Li, J. Huskens and D. N. Reinhoudt, J. Am. Chem. Soc. 126, 11684 (2004).

    Article  Google Scholar 

  26. V. Santhanam and R. P. Andres, Nano Lett. 4, 41 (2004).

    Article  ADS  Google Scholar 

  27. D. S. Petri, G. Wenz, P. Schunk and T. Schimmel, Langmuir 15, 4520 (1999).

    Article  Google Scholar 

  28. C. K. Harnett, K. M. Satyalakshmi and H. G. Craighead, Langmuir 17, 178 (2001).

    Article  Google Scholar 

  29. B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson and G. M. Whitesides, Chem. Rev. 105, 1171 (2005).

    Article  Google Scholar 

  30. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht and F. R. Aussenegg, Opt. Commun. 220, 137 (2003).

    Article  ADS  Google Scholar 

  31. S. Linden, J. Kuhl and H. Giessen, Phys. Rev. Lett. 86, 4688 (2001).

    Article  ADS  Google Scholar 

  32. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).

    Article  Google Scholar 

  33. K. Lee, F. Pen, G. T. Carroll, N. J. Turro and J. T. Koberstein, Langmuir 20, 1812 (2004).

    Article  Google Scholar 

  34. Y. Xia and M. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998).

    Article  Google Scholar 

  35. H. Sugimura, K- H. Lee, H. Sano and R. Toyokawa, Colloid Surf. A 284, 561 (2006).

    Article  Google Scholar 

  36. O. P. Khatri, K. Murase and H. Sugimura, Jpn. J. Appl. Phys. 47, 5048 (2008).

    Article  ADS  Google Scholar 

  37. F-E. Truica-Marasescu and M. R. Wertheimer, Macromol. Chem. Phys. 206, 744 (2005).

    Article  Google Scholar 

  38. K. C. Grabar, R. G. Freeman, M. B. Hommer and M. J. Natan, Anal. Chem. 67, 735 (1995).

    Article  Google Scholar 

  39. H. Sugimura, A. Hozumi, T. Kameyama and O. Takai, Surf. Interface Anal. 34, 550 (2002).

    Article  Google Scholar 

  40. S. Flink, F. C. J. M. Van Veggel and D. N. Reinhoudt, J. Phys. Org. Chem. 14, 407 (2001).

    Article  Google Scholar 

  41. T. Cassagneau and J. H. Fendler, J. Phys. Chem. B 103, 1789 (1999).

    Article  Google Scholar 

  42. O. P. Khatri, H. Sano, K. Murase and H. Sugimura, Langmuir 24, 12077 (2008).

    Article  Google Scholar 

  43. T. Sato, D. G. Hasko and H. Ahmed, J. Vac. Sci. Technol. B 15, 45 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeonghyeon Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Kwon, J. & Yang, J. Adsorption Behavior of Gold Nanoparticles on Amino-terminated Micro Domains Fabricated on Quartz Substrate by Vacuum Ultra-violet Photolithography. J. Korean Phys. Soc. 73, 574–579 (2018). https://doi.org/10.3938/jkps.73.574

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.73.574

Keywords

Navigation