Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 1, pp 45–52 | Cite as

Spatially-Resolved Remote Plasma Atomic Layer Deposition Process for Moisture Barrier Al2O3 Films

  • Sang Heon Yong
  • Sun Jung Kim
  • Sung Min Cho
  • Heeyeop Chae
Article
  • 4 Downloads

Abstract

In this study, nanoscale-thickness Al2O3 layers for moisture barrier films were developed by a spatially resolved remote plasma atomic layer deposition process. The effect of various process parameters was investigated on the atomic concentration of Al2O3 films including the substrate temperature, plasma power, and scanning speed of the substrates. Carbon components were identified as major impurities in the films and is reduced at high temperature, high plasma power and low speed. Optimum conditions are maximum temperature of 80 °C to prevent plastic substrate deformation, a maximum plasma power of 150 W without surface damage and maximum speed of 125 mm/sec to maintain a low carbon contents. The water vapor transmission rate (WVTR) of 3.2 × 10 −4 g/(m2·day) was achieved with 30 nm-thick film in optimum condition.

Keywords

Low temperature Al2O3 Spatially resolved atomic layer deposition Remote plasma atomic layer deposition Moisture barrier films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Logothetidis, Mat. Sci. Eng. B 152, 96 (2008).CrossRefGoogle Scholar
  2. [2]
    J. S. Lewis and M. S. Weaver, J. Quantum. Electron. 10, 45 (2004).CrossRefGoogle Scholar
  3. [3]
    J. S. Park, H. Chae, H. K. Chung and S. I. Lee, Semicond. Sci. Technol. 26, 034001 (2011).ADSCrossRefGoogle Scholar
  4. [4]
    D. Yu, Y. Q. Yang, Z. Chen, Y. Tao and Y. F. Liu, Opt. commun. 43, 362 (2006).Google Scholar
  5. [5]
    T. O. Kääriäinen and D. C. Cameron, Plasma Process. Polym. 6, S237 (2009).CrossRefGoogle Scholar
  6. [6]
    S. E. Potts, G. Dingemans, C. Lachaud and W. M. M. Kessels, J. Vac. Sci. Technol. A 30, 021505 (2012).CrossRefGoogle Scholar
  7. [7]
    S. Lee, H. Choi, S. Shin, J. Park, G. Ham, H. Jung and H. Jeon, Curr. Appl. Phys. 14, 552 (2014).ADSCrossRefGoogle Scholar
  8. [8]
    H. Choi, S. Lee, H. Jung, S. Shin, G. Ham, H. Seo and H. Jeon, Jpn. J. Appl. Phys. 52, 035502 (2013).ADSCrossRefGoogle Scholar
  9. [9]
    Y. Q. Yang, Y. Duan, P. Chen, F. B. Sun, Y. H. Duan, X. Wang and D. Yang, J. Phys. Chem. C 117, 20308 (2013).CrossRefGoogle Scholar
  10. [10]
    Y. Duan, F. Sun, Y. Yang, P. Chen, D. Yang, Y. Duan and X. Wang, Appl. Mater. Interfaces 6, 3799 (2014).CrossRefGoogle Scholar
  11. [11]
    P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner and S. M. George, ACS Appl. Phys. Lett. 89, 031915 (2006).ADSCrossRefGoogle Scholar
  12. [12]
    A. A. Dameron, S. D. Davidson, B. B. Burton, P. F. Carcia, R. S. Mclean and S. M. George, J. Phys. Chem. C 112, 4573 (2008).CrossRefGoogle Scholar
  13. [13]
    S. K. Kim, S. W. Lee, C. S. Hwang, Y. Min, J. Y. Won and J. Jeong, J. Electrochem. Soc. 153, F69 (2006).CrossRefGoogle Scholar
  14. [14]
    P. Poodt et al., J. Vac. Sci. Technol. A 30, 010802 (2012).CrossRefGoogle Scholar
  15. [15]
    T. Hirvikorpi et al., Thin Solid Films 550, 164 (2014).ADSCrossRefGoogle Scholar
  16. [16]
    P. S. Maydannik, A. Plyushch, M. Sillanpaa and D. C. Cameron, J. Vac. Sci. Technol. A 33, 31603 (2015).CrossRefGoogle Scholar
  17. [17]
    P. S. Maydannik et al., J. Vac. Sci. Technol. A 32, 051603 (2014).CrossRefGoogle Scholar
  18. [18]
    H. Choi, S. Shin, H. Jeon, Y. Choi, J. Kim, S. Kim, S. C. Chung and K. Oh, J. Vac. Sci. Techno. A 34, 01A121 (2016).CrossRefGoogle Scholar
  19. [19]
    S. W. Seo, E. Jung, H. Chae and S. M. Cho, Org. Electon. 13, 2436 (2012).CrossRefGoogle Scholar
  20. [20]
    M. Choi, Y. Kim and C. Ha, Prog. Polym. Sci. 33, 581 (2008).CrossRefGoogle Scholar
  21. [21]
    H. Liu, W. Ou and W. Hsu, J. Electron Devices Soc. 4, 5 (2016).Google Scholar
  22. [22]
    K. Choi, K. Ali, C. Y. Kim and N. M. Muhammad, Chem. Vap. Deposition 20, 118 (2014).CrossRefGoogle Scholar
  23. [23]
    W. Ban, S. Kwon, J. Nam, J. Yang, S. Jang and D. Jung, Thin Solid Films 641, 47 (2017).ADSCrossRefGoogle Scholar
  24. [24]
    T. Gougousi, D. Barua, E. D. Young and G. N. Parsons, Chem. Mater 17, 5093 (2005).CrossRefGoogle Scholar
  25. [25]
    E. Raymundo-Pi˜nero, D. Cazorla-Amorós, A. Linares-Solano, J. Find, U. Wild and R. Schlögl, Carbon 40, 597 (2002).CrossRefGoogle Scholar
  26. [26]
    S. Kundu, Y. Wang, W. Xia and M. Muhler, J. Phys. Chem. C 112, 16869 (2008).CrossRefGoogle Scholar
  27. [27]
    J. Haeberle, K. Henkel, H. Gargouri, F. Naumann, B. Gruska, M. Arens, M. Tallarida, D. Schmeiβer and Beilstein J. Nanotechnol. 4, 732 (2013).CrossRefGoogle Scholar
  28. [28]
    M. Li, D. Gao, S. Li, Z. Zhou, J. Zou, H. Tao, L. Wang, M. Xu and J. Peng, RSC Adv. 5, 104613 (2015).CrossRefGoogle Scholar
  29. [29]
    M. R. Saleem, R. Ali, S. Honkanen and J. Turunen, Thin Solid Films 542, 257 (2013).ADSCrossRefGoogle Scholar
  30. [30]
    J. Dendooven, D. Deduytsche, J. Musschoot, R. L. Vanmeirhaeghe and C. Detavernier, J. Electrochem. Soc. 157, G111 (2010).CrossRefGoogle Scholar
  31. [31]
    J. Lee, H. Kim, T. Park, Y. Ko, H. Jeon, J. Park, J. Ryu and H. Jeon, J. Nanosci. Nanotechnol. 12, 7 (2012).Google Scholar
  32. [32]
    W. Kim, D. Moon, B. Kang and J. Park, J. Korean Phys. Soc. 55, 55 (2009).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Sang Heon Yong
    • 1
  • Sun Jung Kim
    • 1
  • Sung Min Cho
    • 1
  • Heeyeop Chae
    • 1
    • 2
  1. 1.School of Chemical EngineeringSungkyunkwan University (SKKU)SuwonKorea
  2. 2.SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan University (SKKU)SuwonKorea

Personalised recommendations