Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 1, pp 40–44 | Cite as

Flexible Carbon-rich Al2O3 Interlayers for Moisture Barrier Films by a Spatially-Resolved Atomic Layer Deposition Process

  • Sang Heon Yong
  • Sun Jung Kim
  • Jang Soon Park
  • Sung Min Cho
  • Hyung June Ahn
  • Heeyeop Chae
Article
  • 2 Downloads

Abstract

In this study, we developed effective carbon-rich Al2O3 interlayers for flexible moisture barrier films. The carbon-rich Al2O3 films were deposited with excessive supply of trimethylaluminum (TMA) precursor. The five-layer structure was made with alternate layers of low-carbon Al2O3 and carbon-rich Al2O3 and the water vapor transmission rate (WVTR) of 3.3 × 10 −4 g/(m2·day) was demonstrated. The WVTR of the multilayer films is reduced by 36% compared to 25 nm thick single Al2O3 barrier film. The WVTR of the five-layer film shows increase of 86% after 1,000 bending at a 1.5 cm radius, while single Al2O3 thin films increased by 367%.

Keywords

Carbon-rich Al2O3 Interlayer Moisture Multilayer Barrier Films Flexible Multilayer Films Encapsulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Logothetidis, Mat. Sci. Eng. B 152, 96, (2008).CrossRefGoogle Scholar
  2. [2]
    J. S. Lewis and M. S. Weaver, J. Quantum. Electron. 10, 45 (2004).CrossRefGoogle Scholar
  3. [3]
    J. S. Park, H. Chae, H. K. Chung and S. I. Lee, Semicond. Sci. Technol. 26, 034001, (2011).ADSCrossRefGoogle Scholar
  4. [4]
    M. D. Groner, F. H. Fabreguette, J. W. Elam and S. M. George, Chem. Mater. 16, 639, (2004).CrossRefGoogle Scholar
  5. [5]
    Y. Q. Yang, Y. Duan, P. Chen, F. B. Sun, Y. H. Duan, X. Wang and D. Yang, J. Phys. Chem. C 117, 20308 (2013).CrossRefGoogle Scholar
  6. [6]
    Y. Duan, F. Sun, Y. Yang, P. Chen, D. Yang, Y. Duan and X. Wang, Appl. Mater. Interfaces 6, 3799 (2014).CrossRefGoogle Scholar
  7. [7]
    P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner and S. M. George, ACS Appl. Phys. Lett. 89, 031915 (2006).ADSCrossRefGoogle Scholar
  8. [8]
    A. A. Dameron, S. D. Davidson, B. B. Burton, P. F. Carcia, R. S. McLean and S. M. George, J. Phys. Chem. 112, 4573 (2008).CrossRefGoogle Scholar
  9. [9]
    S. Franke, M. Baumkötter, C. Monka, S. Raabe, R. Caspary, H. H. Johannes, W. K. Beck and A. P. Gargouri, J. Vac. Sci. Technol. A 35, 01B117-1 (2017).CrossRefGoogle Scholar
  10. [10]
    P. Poodt, D. C. Cameron, E. Dickey, S. M. George, V. Kuznetsov, G. N. Parsons, F. Roozeboom, G. Sundaram and A. Vermeer, J. Vac. Sci. Technol. A 30, 010802 (2012).CrossRefGoogle Scholar
  11. [11]
    T. Hirvikorpi, R. Laine, M. Vaha-Nissi, V. Kilpi, E. Salo, W. M. Li, S. Lindfors, J. Vartiainen, E. Kentta, J. Nikkola, A. Harlin and J. Kostamo, Thin Solid Films 550, 164 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    P. S. Maydannik, A. Plyushch, M. Sillanpaa and D. C. Cameron, J. Vac. Sci. Technol. A 33, 031603 (2015).CrossRefGoogle Scholar
  13. [13]
    K. Sharma, R. A. Hall and S. M. George, J. Vac. Sci. Technol. A 33, 01A132 (2015).CrossRefGoogle Scholar
  14. [14]
    S. A. Starostin, W. Keuning, J. P. Schalken, M. Creatore, W. M. M. Kessels, J. B. Bouwstra, M. C. M. van de Sanden and H. W. de Vries, Plasma. Process. Polym. 13, 311 (2016).CrossRefGoogle Scholar
  15. [15]
    L. Hoffmann, D. Theirich, S. Pack, F. Kocak, D. Schlamm, T. Hasselmann, H. Fahl, A. Räupke, H. Gargouri and T. Riedl, ACS Appl. Mater. Interfaces 9, 4171 (2017).CrossRefGoogle Scholar
  16. [16]
    L. Hoffmann, D. Theirich, D. Schlamm, T. Hasselmann, S. Pack, K. O. Brinkmann, D. Rogalla, S. Peters, A. Räupke, H. Gargouri and T. Riedl, J. Vac. Sci. Technol. A 36, 01A112 (2018).CrossRefGoogle Scholar
  17. [17]
    S. W. Seo, E. Jung, C. Lim, H. Chae and S. M. Cho, Thin Solid Films 520, 6690 (2012).ADSCrossRefGoogle Scholar
  18. [18]
    S. W. Seo, H. K. Chung, H. Chae, S. J. Seo and S. M. Cho, NANO 8, 1350041 (2013).CrossRefGoogle Scholar
  19. [19]
    S. Park, W. M. Yun, L. H. Kim, S. Park, S. H. Kim and C. E. Park, Org. Electron. 14, 3385 (2013).CrossRefGoogle Scholar
  20. [20]
    Z. Chen, H. Wang, X. Wang, P. Chen, Y. Liu, H. Zhao, Y. Zhao and Y. Duan, SCI. REP. 7, 40061 (2017).ADSCrossRefGoogle Scholar
  21. [21]
    H. Jang, H. Ding, M. Wei, C. Li, B. Wei and J. H. Zhang, Nanoscale. Res. Lett. 10, 1186 (2015).CrossRefGoogle Scholar
  22. [22]
    Y. G. Lee, Y. H. Choi, I. S. Kee, H. S. Shim, Y. W. Jin, S. Lee, K. H. Koh and S. Lee, Org. Electron. 10, 1352 (2009).CrossRefGoogle Scholar
  23. [23]
    B. J. Kim, H. Park, H. Seong, M. S. Lee, B. H. Kwon, D. H. Kim, Y. I. Lee, H. Lee, J. I. Lee and S. G. Im, Adv. Eng. Mater. 10, 1600819 (2017).CrossRefGoogle Scholar
  24. [24]
    E. G. Jeong, Y. C. Han, H. G. Im, B. S. Bae and K. C. Choi, Org. Electron. 33, 150 (2016).CrossRefGoogle Scholar
  25. [25]
    H. Zhange, H. Ding, M. Wei, C. Li, B. Wei and J. Zhang, Nanoscale. Res. Lett. 10, 169 (2015).ADSCrossRefGoogle Scholar
  26. [26]
    W. Xiao, D. Y. Hui, C. Zheng, D. Yu, Y. Y. Qiang, C. Ping, C. L. Xiang and Z. Yi, Nanosacle. Res. Lett. 10, 130 (2015).ADSCrossRefGoogle Scholar
  27. [27]
    D. Yu, Y. Q. Yang, Z. Chen, Y. Tao and Y. F. Liu, Opt. Commun. 43, 362 (2016).Google Scholar
  28. [28]
    S. W. Seo, E. Jung, H. Chae and S. M. Cho, Org. Electon. 13, 2436 (2012).CrossRefGoogle Scholar
  29. [29]
    K. Djebaili, Z. Mekhalif, A. Boumaza and A. Djelloull, J. Spectro. 16, 868109 (2015).Google Scholar
  30. [30]
    I. Iatsunskyi, M. Kempinski, M. Jancelewicz, K. Zaleski, S. Jurga and V. Smyntyna, Vacuum 113, 52 (2015).ADSCrossRefGoogle Scholar
  31. [31]
    E. Raymundo-Pi˜nero, D. Cazorla-Amorós, A. Linares-Solano, J. Find, U. Wild and R. Schlögl, Carbon 40, 597 (2002).CrossRefGoogle Scholar
  32. [32]
    S. Kundu, Y. Wang, W. Xia and M. Muhler, J. Phys. Chem. C 112, 16869 (2008).CrossRefGoogle Scholar
  33. [33]
    M. Li, D. Gao, S. Li, Z. Zhou, J. Zou, H. Tao, L. Wang, M. Xu and J. Peng, RCS adv. 5, 104613 (2015).Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Sang Heon Yong
    • 1
  • Sun Jung Kim
    • 1
  • Jang Soon Park
    • 1
  • Sung Min Cho
    • 1
  • Hyung June Ahn
    • 2
  • Heeyeop Chae
    • 1
    • 2
  1. 1.School of Chemical EngineeringSungkyunkwan University (SKKU)SuwonKorea
  2. 2.SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan University (SKKU)SuwonKorea

Personalised recommendations