Journal of the Korean Physical Society

, Volume 73, Issue 12, pp 1908–1917 | Cite as

Immunological Recognition by Artificial Neural Networks

  • Jin Xu
  • Junghyo JoEmail author


The binding affinity between the T-cell receptors (TCRs) and antigenic peptides mainly determines immunological recognition. It is not a trivial task that T cells identify the digital sequences of peptide amino acids by simply relying on the integrated binding affinity between TCRs and antigenic peptides. To address this problem, we examine whether the affinity-based discrimination of peptide sequences is learnable and generalizable by artificial neural networks (ANNs) that process the digital experimental amino acid sequence information of receptors and peptides. A pair of TCR and peptide sequences correspond to the input for ANNs, while the success or failure of the immunological recognition correspond to the output. The output is obtained by both theoretical model and experimental data. In either case, we confirmed that ANNs could learn the immunological recognition. We also found that a homogenized encoding of amino acid sequence was more effective for the supervised learning task.


T-cell receptor diversity Immunological recognition Artificial neural networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. K. Jerne, Science 229, 1057 (1985).ADSCrossRefGoogle Scholar
  2. [2]
    D. Dasgupta, IEEE Sys Man Cybern, 873 (1997).Google Scholar
  3. [3]
    J. D. Farmer, N. H. Packard and A. S. Perelson, Physica D: Nonlinear Phenomena 22, 187 (1986).ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    A. Murugan, T. Mora, A. M. Walczak and C. G. Callan, Jr., Proc. Natl. Acad. Sci. U. S. A. 109, 16161 (2012).ADSCrossRefGoogle Scholar
  5. [5]
    R. Vita, J. A. Overton, J. A. Greenbaum, J. Ponomarenko, J. D. Clark et al., Nucleic Acids Res. 43 (Database issue), D405 (2015).CrossRefGoogle Scholar
  6. [6]
    R. L. Warren, D. Freeman, T. Zeng, G. Choe, S. Munro et al., Genome Res. 21, 790 (2011).CrossRefGoogle Scholar
  7. [7]
    I. V. Zvyagin, M. V. Pogorelyy, M. E. Ivanova, E. A. Komech, M. Shugay et al., Proc. Natl. Acad. Sci. U. S. A. 111, 5980 (2014).ADSCrossRefGoogle Scholar
  8. [8]
    H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., Nucleic Acids Res. 28, 235 (2000).CrossRefGoogle Scholar
  9. [9]
    N. C. Toussaint, P. Donnes and O. Kohlbacher, PLoS Comput. Biol. 4, e1000246 (2008).ADSCrossRefGoogle Scholar
  10. [10]
    N. C. Toussaint and O. Kohlbacher, Nucleic Acids Res. 37 (Web Server issue), W617 (2009).CrossRefGoogle Scholar
  11. [11]
    T. Vider-Shalit, S. Raffaeli and Y. Louzoun, Mol. Immunol. 44, 1253 (2007).CrossRefGoogle Scholar
  12. [12]
    T. Saethang, O. Hirose, I. Kimkong, V. A. Tran, X. T. Dang et al., J. Immunol. Methods 387, 293 (2013).CrossRefGoogle Scholar
  13. [13]
    C. W. Tung and S. Y. Ho, Bioinformatics 23, 942 (2007).CrossRefGoogle Scholar
  14. [14]
    C. W. Tung, M. Ziehm, A. Kamper, O. Kohlbacher and S. Y. Ho, BMC Bioinformatics 12, 446 (2011).CrossRefGoogle Scholar
  15. [15]
    A. Kosmrlj, A. K. Jha, E. S. Huseby, M. Kardar and A. K. Chakraborty, Proc. Natl. Acad. Sci. U. S. A. 105, 16671 (2008).ADSCrossRefGoogle Scholar
  16. [16]
    J. K. Percus, O. E. Percus and A. S. Perelson, Proc. Natl. Acad. Sci. U. S. A. 90, 1691 (1993).ADSCrossRefGoogle Scholar
  17. [17]
    V. Detours, R. Mehr and A. S. Perelson, J. Immunol. 164, 121 (2000).CrossRefGoogle Scholar
  18. [18]
    M. Shugay, D. V. Bagaev, I. V. Zvyagin, R. M. Vroomans, J. C. Crawfor et al., Nucleic Acids Res. 46, D419 (2018).CrossRefGoogle Scholar
  19. [19]
    N. Tickotsky, T. Sagiv, J. Prilusky, E. Shifrut and N. Friedman, Bioinformatics 33, 2924 (2017).CrossRefGoogle Scholar
  20. [20]
    H. S. Robins, P. V. Campregher, S. K. Srivastava, A. Wacher, C. J. Turtle et al., Blood 114, 4099 (2009).CrossRefGoogle Scholar
  21. [21]
    H. S. Robins, S. K. Srivastava, P. V. Campregher, C. J. Turtle, J. Andriesen et al., Sci. Transl. Med. 2, 47ra64 (2010).CrossRefGoogle Scholar
  22. [22]
    H. Li, C. Tang and N. S. Wingreen, Phys. Rev. Lett. 79, 765 (1997).ADSCrossRefGoogle Scholar
  23. [23]
    S. Miyazawa and R. L. Jernigan, J. Mol. Biol. 256, 623 (1996).CrossRefGoogle Scholar
  24. [24]
    A. Kosmrlj, M. Kardar and A. K. Chakraborty, J. Stat. Phys. 149, 203 (2012).ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    A. Kosmrlj, A. K. Chakraborty, M. Kardar and E. I. Shakhnovich, Phys. Rev. Lett. 103 (2009).Google Scholar
  26. [26]
    M. S. Park, S. Y. Park, K. R. Miller, E. J. Collins and H. Y. Lee, Mol. Immunol. 56, 81 (2013).CrossRefGoogle Scholar
  27. [27]
    A. K. Sewell, Nature Reviews Immunology 12, 668 (2012).CrossRefGoogle Scholar
  28. [28]
    H. R. Chen, A. K. Chakraborty and M. Kardar, Phys. Rev. E 97 (2018).Google Scholar
  29. [29]
    M. E. Birnbaum, J. L. Mendoza, D. K. Sethi, S. Dong, J. Glanville et al., Cell 157, 1073 (2014).CrossRefGoogle Scholar
  30. [30]
    J. J. Calis, R. J. de Boer and C. Kesmir, PLoS Comput. Biol. 8, e1002412 (2012).CrossRefGoogle Scholar
  31. [31]
    B. D. Stadinski, K. Shekhar, I. Gomez-Tourino, J. Jung, K. Sasaki et al., Nat. Immunol. 17, 946 (2016).CrossRefGoogle Scholar
  32. [32]
    D. L. Chao, M. P. Davenport, S. Forrest and A. S. Perelson, Eur. J. Immunol. 35, 3452 (2005).CrossRefGoogle Scholar
  33. [33]
    V. Detours, R. Mehr and A. S. Perelson, J. Theor. Biol. 200, 389 (1999).CrossRefGoogle Scholar
  34. [34]
    V. Detours and A. S. Perelson, Proc. Natl. Acad. Sci. U. S. A. 96, 5153 (1999).ADSCrossRefGoogle Scholar
  35. [35]
    D. E. Rumelhart, G. E. Hinton and R. J. Williams, Nature 323, 533 (1986).ADSCrossRefGoogle Scholar
  36. [36]
    L. A. Segel and I. R. Cohen, Design principles for the immune system and other distributed autonomous system (Oxford University Press, New York, 2001).Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Asia Pacific Center for Theoretical PhysicsPohangKorea
  2. 2.Department of PhysicsPohang University of Science and TechnologyPohangKorea
  3. 3.School of Computational SciencesKorea Institute for Advanced StudySeoulKorea
  4. 4.Department of StatisticsKeimyung UniversityDaeguKorea

Personalised recommendations