Journal of the Korean Physical Society

, Volume 73, Issue 12, pp 1895–1898 | Cite as

Investigation of X-ray-induced Defects on Metals and Silicon by Using Coincidence Doppler Broadening Positron Annihilation Spectroscopy

  • C. Y. LeeEmail author


The mechanical properties of Al, Ti, Fe, and Cu metals p-type Si, and n-type Si were investigated by using coincidence Doppler broadening (CDB) positron annihilation spectroscopy. The samples in this experiment were irradiated by using X-rays at generating powers for up to 9 kW. The data taken after the irradiation showed all the characteristic features predicted from defects with vacancies. The S parameter values of the metals were generally less than those of semiconductors such as p-type Si and n-type Si. The relationship between n-type Si and p-type Si were more affected when n-type Si rather than p-type Si was irradiated with X-rays.


Positron annihilation spectroscopy X-ray irradiation Defects Metals Semiconductor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. J. Puska and R. M. Nieminem, Rev. Mod. Phys. 66, 841 (1994).ADSCrossRefGoogle Scholar
  2. [2]
    C. Y. Lee, C. G. Kim, K. Y. Song and J. H. Kim, Kor. J. Mater. Res. 15, 370 (2005).CrossRefGoogle Scholar
  3. [3]
    A. Sachdeva, S. V. Chavan, A. Goswami, A. K. Tyagi and P. K. Pujari, J. Solid State Chem. 178, 2062 (2005).ADSCrossRefGoogle Scholar
  4. [4]
    C. Lim and W. F. Huang, Solid State, Commun. 87, 771 (1993).ADSCrossRefGoogle Scholar
  5. [5]
    P. Sen, Nucl. Instr. Meth. Phys. Res. A 314, 366 (1992).ADSCrossRefGoogle Scholar
  6. [6]
    C. Y. Lee, J. Korean Phys. Soc. 67, 1232 (2015).ADSCrossRefGoogle Scholar
  7. [7]
    Th. Lagouri, Sp. Dedoussis, M. Chardalas and A. Liolios, Phys. Lett. A 229, 259 (1997).ADSCrossRefGoogle Scholar
  8. [8]
    K. G. Lynn, J. R. MacDonald, R. A. Boie, L. C. Feldman, J. D. Gabbe, M. F. Robbins, E. Bonderup and J. Golovchenko, Phys. Rev. Lett. 38, 241 (1977).ADSCrossRefGoogle Scholar
  9. [9]
    K. G. Lynn, J. E. Dickman, W. L. Brown, M. F. Robbins and E. Bonderup, Phys. Rev. B 20, 3566 (1979).ADSCrossRefGoogle Scholar
  10. [10]
    P. Asoka-Kumar, M. Alatalo, V. J. Ghosh, A. C. Kruseman, B. Nielsen and K. G. Lynn, Phys. Rev. Lett. 77, 2097 (1996).ADSCrossRefGoogle Scholar
  11. [11]
    K. Saarinen, J. Nissilä, H. Kauppinen, M. Hakala, M. J. Puska, P. Hautojärvi and C. Corbel, Phys. Rev. Lett. 82, 1883 (1999).ADSCrossRefGoogle Scholar
  12. [12]
    R. S. Brusa, W. Deng, G. Karwasz and A. Zecca, Nucl. Instr. Meth. B 194, 519 (2002).ADSCrossRefGoogle Scholar
  13. [13]
    M. Garganourakis, V. Scagnoli, S. W. Huang, U. Staub, H. Wadati, M. Nakamura, V. A. Guzenko, M. Kawasaki and Y. Tokura, Phys. Rev. Lett. 109, 157203 (2012).ADSCrossRefGoogle Scholar
  14. [14]
    S. Väyrynen, J. Räisänen, P. Tikkanen, I. Kassamakov and E. Tuominen, J. Appl. Phys. 106, 024908 (2009).ADSCrossRefGoogle Scholar
  15. [15]
    S. Dannefaer, P. Mascher and D. Kerr, J. Appl. Phys. 73, 3740 (1993).ADSCrossRefGoogle Scholar
  16. [16]
    M. Grätzel, Nature 414, 338 (2001).ADSCrossRefGoogle Scholar
  17. [17]
    C. Y. Lee, Appl. Sci. Converg. Technol. 25, 85 (2016).CrossRefGoogle Scholar
  18. [18]
    V. Kiryukhin, D. Casa, J. P. Hill, B. Keimer, A. Vigliante, Y. Tomoioka and Y. Tokura, Nature 386, 813 (1997).ADSCrossRefGoogle Scholar
  19. [19]
    S. Mantl and W. Triftshauser, Phys. B 17, 1645 (1978).Google Scholar
  20. [20]
    S. H. Chang, J. Kim, C. Phatak, K. D’Aquila, S. K. Kim, J. Kim, S. J. Song, C. S. Hwang, J. A. Eastman, J. W. Freeland and S. Hong, ACS Nano 8, 1584 (2014).CrossRefGoogle Scholar
  21. [21]
    T. K. Gupta and W. G. Carlson, J. Mater. Sci. 20, 3487 (1987).ADSCrossRefGoogle Scholar
  22. [22]
    C. K. Williams, A. Reisman and P. Bhattacharya, J. Appl. Phys. 64, 1145 (1988).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsHannam UniversityDaejonKorea

Personalised recommendations