Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 12, pp 1889–1894 | Cite as

A High Efficient Piezoelectric Windmill using Magnetic Force for Low Wind Speed in Wireless Sensor Networks

  • Chan Ho Yang
  • Yewon Song
  • Jeongpil Jhun
  • Won Seop Hwang
  • Seong Do Hong
  • Sang Bum Woo
  • Tae Hyun SungEmail author
  • Sin Woo Jeong
  • Hong Hee Yoo
Article
  • 24 Downloads

Abstract

An innovative small-scale piezoelectric energy harvester has been proposed to gather wind energy. A conventional horizontal-axis wind power generation has a low generating efficiency at low wind speed. To overcome this weakness, we designed a piezoelectric windmill optimized at low-speed wind. A piezoelectric device having high energy conversion efficiency is used in a small windmill. The maximum output power of the windmill was about 3.14 mW when wind speed was 1.94 m/s. Finally, the output power and the efficiency of the system were compared with a conventional wind power system. This work will be beneficial for the piezoelectric energy harvesting technology to be applied to the real world such as wireless sensor networks (WSN).

Keywords

Energy conversion Energy harvesting Piezoelectric materials Wind Wireless sensor networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Cassola, M. Burlando, M. Antonelli and C. F. Ratto, J. Appl. Meteorol. Clim. 47, 12 (2008).CrossRefGoogle Scholar
  2. [2]
    M. Peigney and D. Siegert, Smart Mat. Struct. 22, 9 (2013).CrossRefGoogle Scholar
  3. [3]
    N. G. Stephen, J. Sound. Vib. 293, 1 (2006).CrossRefGoogle Scholar
  4. [4]
    S. Roundy and P. K. Wright, Smart Mat. Struct. 13, 5 (2004).CrossRefGoogle Scholar
  5. [5]
    Y. M. Na, H. S. Lee, T. H. Kang, J. K. Park and T. G. Park, Korean J. Mater. Res. 25, 10 (2015).Google Scholar
  6. [6]
    D. A. Wang and N. Z. Liu, Sens. Actuators A: Phys. 167, 2 (2011).CrossRefGoogle Scholar
  7. [7]
    M. Zhang, Y. Z. Liu and Z. M. Cao, Math. Probl. Eng. 2014, (2014).Google Scholar
  8. [8]
    M. Al Ahmad, J. Electron. Mater. 43, 2 (2014).Google Scholar
  9. [9]
    M. A. Ilyas and J. Swingler, Energy 125, 716 (2017).CrossRefGoogle Scholar
  10. [10]
    Y. Cha, J. Hong, J. Lee, J. M. Park and K. Kim, Sensors 16, 7 (2016).Google Scholar
  11. [11]
    Y. S. Cha and J. Seo, J. Intel. Mat. Syst. Str. 29, 7 (2018).Google Scholar
  12. [12]
    A. Delnavaz and J. Voix, Smart Mat. Struct. 23, 10 (2014).CrossRefGoogle Scholar
  13. [13]
    M. Renaud, P. Fiorini, R. van Schaijk and C. van Hoof, Smart Mat. Struct. 21, 4 (2012).CrossRefGoogle Scholar
  14. [14]
    J. H. Ahn et al., J. Korean Phys. Soc. 73, 3 (2018).Google Scholar
  15. [15]
    A. Jasim, G. Yesner, H. Wang, A. Safari, A. Maher and B. Basily, Appl. Energ. 224, 438 (2018).CrossRefGoogle Scholar
  16. [16]
    C. H. Yang et al., Sens. Actuators A: Phys. 261, 317 (2017).CrossRefGoogle Scholar
  17. [17]
    S. J. Hwang et al., Curr. Appl. Phys. 15, 6 (2015).Google Scholar
  18. [18]
    K. B. Kim et al., Energ. Convers. Manage. 171, 31 (2018).CrossRefGoogle Scholar
  19. [19]
    J. Xiao, X. Zou and W. Y. Xu, Sensors 17, 10 (2017).Google Scholar
  20. [20]
    H. L. Yang et al., J. Mater. Civil Eng. 29, 11 (2017).Google Scholar
  21. [21]
    Y. Song et al., Int. J. Hydrogen Energy 41, 29 (2016).Google Scholar
  22. [22]
    H. Wang, A. Jasim and X. D. Chen, Appl. Energ. 212, 1083 (2018).CrossRefGoogle Scholar
  23. [23]
    Y. S. Cha et al., Renewable Energy 86, 449 (2016).CrossRefGoogle Scholar
  24. [24]
    J. Y. Cho et al., Sens. Actuators A: Phys. 280, 340 (2018).CrossRefGoogle Scholar
  25. [25]
    M. Deterre, E. Lefeuvre and E. Dufour-Gergam, Smart Mat. Struct. 21, 8 (2012).CrossRefGoogle Scholar
  26. [26]
    A. Khaligh, P. Zeng and C. Zheng, IEEE T. Ind. Electron. 57, 3 (2010).CrossRefGoogle Scholar
  27. [27]
    M. Kim, J. Dugundji and B. L. Wardle, J. Korean Phys. Soc. 62, 11 (2013).Google Scholar
  28. [28]
    S. Michelin and O. Doare, J. Fluid Mech. 714, 489 (2013).ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    S. F. Nabavi, A. Farshidianfar and A. Afsharfard, Appl. Ocean Rese. 76, 174 (2018).CrossRefGoogle Scholar
  30. [30]
    S. Orrego et al., Appl. Energ. 194, 212 (2017).CrossRefGoogle Scholar
  31. [31]
    C. H. Yang et al., Ferroelectrics 449, 1 (2013).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Chan Ho Yang
    • 1
  • Yewon Song
    • 1
  • Jeongpil Jhun
    • 1
  • Won Seop Hwang
    • 1
  • Seong Do Hong
    • 1
  • Sang Bum Woo
    • 1
  • Tae Hyun Sung
    • 1
    Email author
  • Sin Woo Jeong
    • 2
  • Hong Hee Yoo
    • 2
  1. 1.Department of Electrical engineeringHanyang UniversitySeoulKorea
  2. 2.Department of Mechanical engineeringHanyang UniversitySeoulKorea

Personalised recommendations