Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 12, pp 1873–1878 | Cite as

Ionic Conductivity in Lithium-Borate-Tantalate Compound Glasses

  • Oh Hyeok Kwon
  • Yong Suk Yang
  • Young Hoon Rim
Article
  • 10 Downloads

Abstract

We have investigated the ionic conductivity and dielectric relaxation in Li2B4O7 (LBO) and Li2OB2O3-Ta2O5 (LBTO) glasses. The sample was synthesized by using the melt quenching method. The frequency dependence of the electrical data from the LBO and LBTO glasses has been analyzed in the frameworks of the impedance Cole-Cole formalism and the universal power-law representation driven by the modified fractional Rayleigh equation. The potential barriers in the LBO and the LBTO glasses turn out to be the same. Comparing with the dc and ac activation energies of the LBO glass, these energies of the LBTO glass decrease due to the increasing Coulomb interaction of inter-cationic interaction.

Keywords

Glass Conductivity Activation energy Cole-Cole plot Power law Modified Rayleigh equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Komatsu, T. Sugawara and K. Sassa, Appl. Phys. Lett. 70, 3492 (1997).ADSCrossRefGoogle Scholar
  2. [2]
    T. Sato and H. Abe, IEEE Trans. Ultrason. Ferroelectrics Frequency Control 45, 1506 (1998).CrossRefGoogle Scholar
  3. [3]
    J. H. Cho, N. J. Bang, S. H. Kim and Y. S. Yang, J. Korean Phys. Soc. 29, S555 (1996).Google Scholar
  4. [4]
    V. Y. Shur, A. R. Akhmatkhanov, D. S. Chezganov, A. I. Lobov, I. S. Baturin and M. M. Smirnov, Appl. Phys. Lett. 103, 242903 (2013).ADSCrossRefGoogle Scholar
  5. [5]
    A. E. Aliev, I. N. Kholmanov and P. K. Khabibullaev, Solid State Ionics 118, 111 (1999).CrossRefGoogle Scholar
  6. [6]
    J. Liu, M. N. Banis, X. Li, A. Lushington, M. Cai, R. Li, T-K Sham and X. Sun J. Phys. Chem. C 117, 20260 (2013).CrossRefGoogle Scholar
  7. [7]
    A. K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1996).Google Scholar
  8. [8]
    J. C. Dyre and T. B. Schröder, Rev. Mod. Phys. 72, 873 (2000).ADSCrossRefGoogle Scholar
  9. [9]
    Y. H. Rim, M. Kim, J. E. Kim and Y. S. Yang, New J. Phys. 15, 023005 (2013).ADSCrossRefGoogle Scholar
  10. [10]
    C. T. Moynihan, L. P. Boesch and N. L. Laberge, Phys. Chem. Glasses 14, 122 (1973).Google Scholar
  11. [11]
    Y. H. Rim, B. S. Lee, H. W. Choi, J. H. Cho and Y. S. Yang, J. Phys. Chem. B 110, 8094 (2006).CrossRefGoogle Scholar
  12. [12]
    J. R. Macdonald, Impedance Spectroscopy, second ed. (John Wiley & Sons Inc., New Jersey, 2005).Google Scholar
  13. [13]
    J. C. Dyre, P. Maass, B. Roling and D. L. Sidebottom, Rep. Prog. Phys. 72, 046501 (2009).ADSCrossRefGoogle Scholar
  14. [14]
    A. K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983).Google Scholar
  15. [15]
    R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).ADSCrossRefGoogle Scholar
  16. [16]
    P. Maass, A. Bunde and M. D. Ingram, Phys. Rev. Lett. 68, 3064 (1992).ADSCrossRefGoogle Scholar
  17. [17]
    D. L. Sidebottom, Phys. Rev. B 61, 14507 (2000).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Oh Hyeok Kwon
    • 1
  • Yong Suk Yang
    • 1
  • Young Hoon Rim
    • 2
  1. 1.Department of Nano Fusion TechnologyPusan National UniversityBusanKorea
  2. 2.College of Liberal ArtsSemyung UniversityChechonKorea

Personalised recommendations