Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 12, pp 1867–1872 | Cite as

Nickel Doping on Cobalt Oxide Thin Film Using by Sputtering Process-a Route for Surface Modification for p-type Metal Oxide Gas Sensors

  • Jun-gu Kang
  • Joon-Shik ParkEmail author
  • Byeong-Seon An
  • Cheol-Woong Yang
  • Hoo-Jeong Lee
Article
  • 7 Downloads

Abstract

This study proposes a route for surface modification for p-type cobalt oxide-based gas sensors. We deposit a thin layer of Ni on the Co oxide film by sputtering process and annealed at 350 °C for 15 min in air, which changes a typical sputtered film surface into one interlaced with a high density of hemispherical nanoparticles. Our in-depth materials characterization using transmission electron microscopy discloses that the microstructure evolution is the result of an extensive inter-diffusion of Co and Ni, and that the nanoparticles are nickel oxide dissolving some Co. Sensor performance measurement unfolds that the surface modification results in a significant sensitivity enhancement, nearly 200% increase for toluene (at 250 °C) and CO (at 200 °C) gases in comparison with the undoped samples.

Keywords

RF sputtering Ni-doped Co oxide thin film Gas sensor CO Toluene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Selvakumar, P. Rajeshkumar, N. Dharmaraj and N. Kumar, Mater Today-Proc 3, 1725 (2016).CrossRefGoogle Scholar
  2. [2]
    T. Zhang, L. Liu, Q. Qi, S. Li and G. Lu, Sensor Actuat. B-Chem 139, 287 (2009).CrossRefGoogle Scholar
  3. [3]
    F. Gyger et al., Particle & Particle Systems Characterization 31, 591 (2014).CrossRefGoogle Scholar
  4. [4]
    J-K. Choi et al., Sensor Actuat. B-Chem 150, 191 (2010).CrossRefGoogle Scholar
  5. [5]
    S. Tian et al., Rsc Advances 3, 11823 (2013).CrossRefGoogle Scholar
  6. [6]
    J-g. Kang, J-S. Park and H-J. Lee, Sensor Actuat. BChem 248, 1011 (2017).CrossRefGoogle Scholar
  7. [7]
    G. Korotcenkov, V. Brinzari, L. Gulina and B. Cho, App. Surf. Sci. 353, 793 (2015).ADSCrossRefGoogle Scholar
  8. [8]
    N. Yamazoe, Y. Kurokawa and T. Seiyama, Sensor Actuat. 4, 283 (1983).CrossRefGoogle Scholar
  9. [9]
    G. Korotcenkov, Mater. Sci. Eng: R: Reports 61, 1 (2008).CrossRefGoogle Scholar
  10. [10]
    J-W. Yoon, H-J. Kim, H-M. Jeong and J-H. Lee, Sensor Actuat. B-Chem 202, 263 (2014).CrossRefGoogle Scholar
  11. [11]
    X. San et al., J. Alloy Compd. 636, 357 (2015).CrossRefGoogle Scholar
  12. [12]
    S. C. Petitto, E. M. Marsh, G. A. Carson, M. A. Langell and J. Mol, Catal. A-Chem. 281, 49 (2008).CrossRefGoogle Scholar
  13. [13]
    J. Xu and J. Cheng, J. Alloy Compd. 686, 753 (2016).CrossRefGoogle Scholar
  14. [14]
    J. Y. Kim et al., J. Phys. Chem. C 118, 25994 (2014).CrossRefGoogle Scholar
  15. [15]
    N. Shaalan, M. Rashad, A. Moharram and M. Abdel-Rahim, Mat. Sci. Semicon. Proc. 46, 1 (2016).CrossRefGoogle Scholar
  16. [16]
    Z. Wen et al., Sensor Actuat. B-Chem 186, 172 (2013).CrossRefGoogle Scholar
  17. [17]
    W-Y. Li, L-N. Xu and J. Chen, Adv. Funct. Mater. 15, 851 (2005).CrossRefGoogle Scholar
  18. [18]
    S. Deng et al., Sensor Actuat. B-Chem 233, 615 (2016).CrossRefGoogle Scholar
  19. [19]
    T. Zhou et al., Sensor Actuat. B-Chem 242, 369 (2017).CrossRefGoogle Scholar
  20. [20]
    H-M. Jeong, H-J. Kim, P. Rai, J-W. Yoon and J-H. Lee, Sensor Actuat. B-Chem 201, 482 (2014).CrossRefGoogle Scholar
  21. [21]
    C. Stella, N. Soundararajan and K. Ramachandran, J. Mater. Sci-Mater El. 26, 4178 (2015).CrossRefGoogle Scholar
  22. [22]
    T. Akamatsu, T. Itoh, N. Izu, W. Shin and K. Sato, Sensors 15, 8109 (2015).CrossRefGoogle Scholar
  23. [23]
    N. Appandairajan and J. Gopalakrishnan, P. Indian As-CHEM Sci 87, 115 (1978).Google Scholar
  24. [24]
    Y. E. Roginskaya, O. Morozova, E. Lubnin, Y. E. Ulitina, G. Lopukhova and S. Trasatti, Langmuir 13, 4621 (1997).CrossRefGoogle Scholar
  25. [25]
    L. Hu, L. Wu, M. Liao, X. Hu and X. Fang, Adv. Funct. Mater. 22, 998 (2012).CrossRefGoogle Scholar
  26. [26]
    Y. Zhu et al., J. Power Sources 267, 888 (2014).ADSCrossRefGoogle Scholar
  27. [27]
    J. Robin, Ann Chim(Paris) 10, 389 (1955).Google Scholar
  28. [28]
    J. Tareen et al., Mater. Res. Bull. 19, 989 (1984).CrossRefGoogle Scholar
  29. [29]
    Y. Shimizu, SnO2 Gas Sensor. In Encyclopedia of Applied Electrochemistry, edited by G. Kreysa, K-I. Ota and R. F. Savinell (Springer New York: New York, NY, 2014), p 1974.Google Scholar
  30. [30]
    J. M. Suh et al., ACS Appl. Mater. Inter. 10, 1050 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Jun-gu Kang
    • 1
    • 2
  • Joon-Shik Park
    • 2
    Email author
  • Byeong-Seon An
    • 1
  • Cheol-Woong Yang
    • 1
  • Hoo-Jeong Lee
    • 1
    • 3
  1. 1.School of Advanced Materials Sciences & EngineeringSungkyunkwan UniversitySuwonKorea
  2. 2.Smart Sensor Research CenterKorea Electrical Technology Institute (KETI)SeongnamKorea
  3. 3.SKKU Advanced Institute of Nanotechnology (SAINT)SuwonKorea

Personalised recommendations