Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 12, pp 1849–1854 | Cite as

Feasibility of a Nonlinear Acoustic Method for the Assessment of Bone Status and Osteoporosis in Trabecular Bone

  • Kang Il LeeEmail author
Article
  • 5 Downloads

Abstract

The present study aims to investigate the feasibility of using a simple nonlinear acoustic method for the assessment of bone status and osteoporosis in trabecular bone. Correlations of linear and nonlinear ultrasound parameters with the apparent bone density were obtained in 32 bovine femoral trabecular bone samples. Highly significant positive correlations were observed between the apparent bone density and the two linear ultrasound parameters, the speed of sound (SOS) and the normalized broadband ultrasound attenuation (nBUA), with Spearman’s correlation coefficients of r = 0.85 and 0.77. In contrast, the apparent bone density was found to be negatively correlated with the nonlinear ultrasound parameter introduced in the present study, the logarithmic difference between the power spectrum levels of the fundamental frequency and the second harmonic (PSL1-PSL2), with the highest correlation coefficient of r = −0.92. These results suggest that the PSL1-PSL2, in addition to the SOS and the nBUA, may be useful for the assessment of bone status and osteoporosis.

Keywords

Osteoporosis Trabecular bone Apparent bone density Quantitative ultrasound Second harmonic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. A. Kanis, E. V. McCloskey, H. Johansson, A. Oden, L. J. Melton III and N. Khaltaev, Bone 42, 467 (2008).CrossRefGoogle Scholar
  2. [2]
    K. A. Wear, S. Nagaraja, M. L. Dreher, S. Sadoughi, S. Zhu and T. M. Keaveny, Bone 103, 93 (2017).CrossRefGoogle Scholar
  3. [3]
    P. Laugier, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1179 (2008).CrossRefGoogle Scholar
  4. [4]
    R. Barkmann, S. Dencks, P. Laugier, F. Padilla, K. Brixen, J. Ryg, A. Seekamp, L. Mahlke, A. Bremer, M. Heller and C. C. Gluer, Osteoporos. Int. 21, 969 (2010).CrossRefGoogle Scholar
  5. [5]
    G. Renaud, S. Calle, J-P. Remenieras and M. Defontaine, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1497 (2008).CrossRefGoogle Scholar
  6. [6]
    M. Muller, D. Mitton, M. Talmant, P. Johnson and P. Laugier, J. Biomech. 41, 1062 (2008).CrossRefGoogle Scholar
  7. [7]
    T. J. Ulrich, P. A. Johnson, M. Muller, D. Mitton, M. Talmant and P. Laugier, Appl. Phys. Lett. 91, 213901 (2007).ADSCrossRefGoogle Scholar
  8. [8]
    G. Renaud, S. Calle, J-P. Remenieras and M. Defontaine, Int. J. Non-Linear Mech. 43, 194 (2008).ADSCrossRefGoogle Scholar
  9. [9]
    C. Zhang, L. H. Le, R. Zheng, D. Ta and E. Lou, J. Acoust. Soc. Am. 129, 3317 (2011).ADSCrossRefGoogle Scholar
  10. [10]
    K. A. Wear, S. Nagaraja, M. L. Dreher and S. L. Gibson, J. Acoust. Soc. Am. 131, 1605 (2012).ADSCrossRefGoogle Scholar
  11. [11]
    K. I. Lee, Jpn. J. Appl. Phys. 47, 5720 (2008).ADSCrossRefGoogle Scholar
  12. [12]
    K. I. Lee and M. J. Choi, J. Acoust. Soc. Am. 131, EL67 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsKangwon National UniversityChuncheonKorea

Personalised recommendations