Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 12, pp 1827–1833 | Cite as

System Design and Evaluation of a Compact and High Energy X-ray Talbot-Lau Grating Interferometer for Industrial Applications

  • Seho Lee
  • Ohsung Oh
  • Youngju Kim
  • Seung Wook LeeEmail author
  • Insoo Kim
  • Jinkyu Kim
Article
  • 45 Downloads

Abstract

X-ray grating interferometry has been an active area of research in recent years. In particular, various studies have been carried out for the practical use of the x-ray grating interferometer in medical and industrial fields. For the commercialization of the system, it needs to be optimized for its application. In this study, we have developed a prototype of the compact high energy x-ray grating interferometer of which the high effective energy and compactness is of our primary feature of design. We have designed the Talbot-Lau x-ray interferometer in a symmetrical geometry with an effective energy of 54.3 keV. The system has a source-to-analyzer grating distance of 788.4 mm, which is compact enough for a commercial product. In a normal operation, it took less than ten seconds to acquire a set of phase stepping images. The acquired images had a maximum visibility of about 15%, which is relatively high compared with the visibilities of the other high-energy grating interferometric systems reported so far.

Keywords

X-ray phase contrast imaging Talbot-Lau interferometry High energy phase contrast imaging Dark-field imaging compact design 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Momose, T. Takeda, Y. Itai and K. Hirano, Nat. Med. 2, 473 (1996).CrossRefGoogle Scholar
  2. [2]
    S. W. Lee et al., J. Korean Phys. Soc. 71, 9 (2017).Google Scholar
  3. [3]
    A. Momose, S. Kawamoto, I. Koyama, Y. Hamaishi, K. Takai and Y. Suzuki, Jpn. J. of Appl. Phys. 42, L866 (2003).ADSCrossRefGoogle Scholar
  4. [4]
    F. Pfeiffer, T. Weitkamp, O. Bunk and C. David, Nat. Phys. Lett. 81, 3287 (2002).Google Scholar
  5. [5]
    F. Pfeiffer et al., Nat. Mater 7, 134 (2008).ADSCrossRefGoogle Scholar
  6. [6]
    T. Donath, M. Chabior, F. Pfeiffer, O. Bunk, E. Reznikova et al., J. Appl. Phys. 106, 054703 (2009).ADSCrossRefGoogle Scholar
  7. [7]
    A. Sarapata, J. W. Stayman, M. Finkenthal, J. H. Siewerdsen, F. Pfeiffer and D. Stutman, Med. Phys. 41, 2 (2014).CrossRefGoogle Scholar
  8. [8]
    C. Kottler, V. Revol, R. Kaufmann and C. Urban, J. Appl. Phys. 108, 114906 (2010).ADSCrossRefGoogle Scholar
  9. [9]
    P. Bartl, F. Bayer, J. Durst, W. Haas, T. Michel et al., J. Instrum. 5, P10008 (2010).CrossRefGoogle Scholar
  10. [10]
    A. Sarapata, M. Willner, M. Walter, T. Duttenhofer, K. Kaiser et al., Opt. Express 23, 1 (2015).CrossRefGoogle Scholar
  11. [11]
    F. Horn, C. Hauke, S. Lachner, V. Ludwig, G. Pelzer et al., Proc. of SPIE 9783, 97830 (2016).Google Scholar
  12. [12]
    F. Horn, K. Gelse, S. Jabari, C. Hauke, S. Kaeppler et al., Phys. Med. Biol. 62, 6729 (2017).CrossRefGoogle Scholar
  13. [13]
    C. Hauke, F. Horn, G. Pelzer, J. Rieger, S. Lachner et al., Proc. of SPIE 9783, 97835 (2016).Google Scholar
  14. [14]
    L. B. Gromann, F. D. Marco, K. Wiler, P. B. Noel, K. Scherer et al., Sci. Rep. 7, 4807 (2017).ADSCrossRefGoogle Scholar
  15. [15]
    T. Thuring, M. Abis, Z. Wang, C. David and M. Stampanoni, Sci. Rep. 4, 5198 (2014).ADSCrossRefGoogle Scholar
  16. [16]
    A. Momose, H. Kuwabara and W. Yashiro, Appl. Phys Express 4, 066603 (2011).ADSCrossRefGoogle Scholar
  17. [17]
    A. Momose, W. Yashiro and Y. Takeda, Jpn. J. Appl. Phys. 47, 10 (2008).Google Scholar
  18. [18]
  19. [19]
  20. [20]
    S. Marathe, L. Assoufid, X. Xiao, K. Ham, W. W. Johnson and L. G. Butler, Rev. Sci. Instrum. 85, 013704 (2014).ADSCrossRefGoogle Scholar
  21. [21]
    T. J. Schroter, F. J. Koch, P. Meyer, D. Kunka, J. Meiser et al., Rev. Sci. Instrum. 88, 015104 (2017).ADSCrossRefGoogle Scholar
  22. [22]
    T. Koelhler, H. Daerr, G. Martens, N. Kuhn, S. Loscher et al., Med. Phys. 42, 4 (2015).Google Scholar
  23. [23]
    S. Bachche, M. Nonoguchi, K. Kato, M. Kageyama, T. Koike et al., Sci. Rep. 7, 6711 (2017).ADSCrossRefGoogle Scholar
  24. [24]
    S. Bachche, M. Nonoguchi, K. Kato, M. Kageyama, T. Koike et al., Proc. of SPIE 9964, 99640 (2016).ADSGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Seho Lee
    • 1
  • Ohsung Oh
    • 1
  • Youngju Kim
    • 1
  • Seung Wook Lee
    • 1
    Email author
  • Insoo Kim
    • 2
  • Jinkyu Kim
    • 2
  1. 1.School of Mechanical EngineeringPusan National UniversityBusanKorea
  2. 2.EB Tech Co., LtdDaejeonKorea

Personalised recommendations