Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 11, pp 1794–1798 | Cite as

Fabrication and Characterization of Cu3SbS4 Solar Cell with Cd-free Buffer

  • Gyuho Han
  • Ji Won Lee
  • JunHo Kim
Article
  • 20 Downloads

Abstract

We have grown famatinite Cu3SbS4 films by using sulfurization of Cu/Sb stack film. Sulfurization at 500 °C produced famatinite Cu3SbS4 phase, while 400 °C and 450 °C sulfurization exhibited unreacted and mixed phases. The fabricated Cu3SbS4 film showed S-deficiency, and secondary phase of Cu12Sb4S13. The secondary phase was confirmed by X-ray diffraction, Raman spectroscopy, photoluminescence and external quantum efficiency measurements. We have also fabricated solar cell in substrate type structure, ITO/ZnO/(Zn,Sn)O/Cu3SbS4/Mo/glass, where Cu3SbS4 was used as a absorber layer and (Zn,Sn)O was employed as a Cd-free buffer. Our best cell showed power conversion efficiency of 0.198%. Characterization results of Cu3SbS4 absorber indicates deep defect (due to S-deficiency) and low shunt resistance (due to Cu12Sb4S13 phase). Thus in order to improve the cell efficiency, it is required to grow high quality Cu3SbS4 film with no S-deficiency and no secondary phase.

Keywords

Cu3SbS4 Secondary phase Defect Solar cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014).CrossRefGoogle Scholar
  2. [2]
    O. Gunawan, T. K. Todorov and D. B. Mitzi, Appl. Phys. Lett. 97, 233506 (2010).ADSCrossRefGoogle Scholar
  3. [3]
    T. Gokmen, O. Gunawan, T. K. Todorov and D. B. Mitzi, Appl. Phys. Lett. 103, 103506 (2013).ADSCrossRefGoogle Scholar
  4. [4]
    J. V. Embden, K. Latham, N. W. Duffy and Y. Tachibana, J. Am. Chem. Soc. 135, 11562 (2013).CrossRefGoogle Scholar
  5. [5]
    C. T. Crespo, J. Phys. Chem. C 120, 7959 (2016).CrossRefGoogle Scholar
  6. [6]
    W. Septina, S. Ikeda, Y. Iga, T. Harada and M. Matsumura, Thin Solid Films 550, 700 (2014).ADSCrossRefGoogle Scholar
  7. [7]
    L. Wang, B. Yan, Z. Xia, M. Leng, Y. Zhou, D. J. Xue, J. Zhong, L. Gao, H. Song and J. Tang, Sol. Energy Mater. Sol. Cells 144, 33 (2016).CrossRefGoogle Scholar
  8. [8]
    N. D. Franzer, N. R. Paudel, C. Xiao and Y. Yan, in PVSC 2014. IEEE. 40th (2014), p. 2326.Google Scholar
  9. [9]
    U. Chalaphati, B. Poornaprakash and S-H. Park, Ceramic International 43, 5229 (2017).CrossRefGoogle Scholar
  10. [10]
    T. Shi, A-J. Yin, M. Al-Jassim and Y. Yan, Appl. Phys. Lett. 103, 152105 (2013).ADSCrossRefGoogle Scholar
  11. [11]
    A. Hultqvist, C. Platzer-Björkman, U. Zimmermann, M. Edoff and T. Törndahl, Prog. Photovolt.: Res. Appl. 20, 883 (2012).CrossRefGoogle Scholar
  12. [12]
    C. Platzer-Björkman, C. Frisk, J. K. Larsen, T. Ericson, S-Y. Li, J. J. S. Scragg, J. Keller, F. Larsson and T. Törndahl, Appl. Phys. Lett. 107, 243904 (2015).ADSCrossRefGoogle Scholar
  13. [13]
    D. B. Khadka and J. Kim, CrystEngComm 15, 10500 (2013).CrossRefGoogle Scholar
  14. [14]
    S. Kim, J. Kim, T. R. Rana, K-W. Kim and M-H. Kwon, Curr. Appl. Phys. 18, 191 (2018).ADSCrossRefGoogle Scholar
  15. [15]
    S. A. McClary, R. B. Balow and R. Agrawal, J. Mater. Chem. C 6, 10538 (2018).CrossRefGoogle Scholar
  16. [16]
    C. An, Y. Jin, K. Tang and Y. Qian, J. Mater. Chem. 13, 301 (2003).CrossRefGoogle Scholar
  17. [17]
    M. Bella, S. Blayac, C. Rivero, V. Serradeil and P. Boulet, Computational Material Science 108, 264 (2015).CrossRefGoogle Scholar
  18. [18]
    R. Jeanloz and M. L. Johnson, Phys. Chem. Minerals 11, 52 (1984).ADSCrossRefGoogle Scholar
  19. [19]
    S. H. Chaki, J. P. Tailor and M. P. Deshpande, Materials Science in Semiconductor Processing 27, 577 (2014).CrossRefGoogle Scholar
  20. [20]
    P. Škácha, E. Buixaderas, J. Plášil, J. Sejkora, V. R. Goliáš and V. Vlček, The Canadian Mineralogist 52, 501 (2014).CrossRefGoogle Scholar
  21. [21]
    T. Rath, A. J. MacLachian, M. D. Brown and S. A. Haque, J. Mater. Chem. A 3, 24155 (2015).CrossRefGoogle Scholar
  22. [22]
    L. Yu, R. S. Kokenyesi, D. A. Keszler and A. Zunger, Adv. Energy Mater 3, 43 (2013).CrossRefGoogle Scholar
  23. [23]
    C. Yan, Z. Su, E. Gu, T. Cao, J. Yang, J. Liu, F. Liu, Y. Lai, J. Li and Y. Liu, RSC Adv. 2, 10481 (2012).CrossRefGoogle Scholar
  24. [24]
    S. J. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong and J. H. Yun, Appl. Phys. Lett. 97, 021905 (2010).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsIncheon National UniversityIncheonKorea

Personalised recommendations