Journal of the Korean Physical Society

, Volume 73, Issue 11, pp 1774–1786 | Cite as

Effects of Phenotypic Variation on Evolutionary Dynamics

  • Yung-Gyung Kang
  • Jeong-Man Park


Phenotypic variation among clones (individuals with identical genes, i.e. isogenic individuals) has been recognized both theoretically and experimentally. We investigate the effects of phenotypic variation on evolutionary dynamics of a population. In a population, the individuals are assumed to be haploid with two genotypes: one genotype shows phenotypic variation and the other does not. We use an individual-based Moran model in which the individuals reproduce according to their fitness values and die at random. The evolutionary dynamics of an individual-based model is formulated in terms of a master equation and is approximated as the Fokker-Planck equation (FPE) and the coupled non-linear stochastic differential equations (SDEs) with multiplicative noise. We first analyze the deterministic part of the SDEs to obtain the fixed points and determine the stability of each fixed point. We find that there is a discrete phase transition in the population distribution when the probability of reproducing the fitter individual is equal to the critical value determined by the stability of the fixed points. Next, we take demographic stochasticity into account and analyze the FPE by eliminating the fast variable to reduce the coupled two-variable FPE to the single-variable FPE. We derive a quasi-stationary distribution of the reduced FPE and predict the fixation probabilities and the mean fixation times to absorbing states. We also carry out numerical simulations in the form of the Gillespie algorithm and find that the results of simulations are consistent with the analytic predictions.


Evolutionary dynamics Phenotypic variation Demographic stochasticity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Korobkova, T. Emonet, J. M. Vilar, T. S. Shimidzu and P. Cluzel, Nature 428, 574 (2004).ADSCrossRefGoogle Scholar
  2. [2]
    J. Paulsson, Nature 427, 415 (2004).ADSCrossRefGoogle Scholar
  3. [3]
    M. Acar, J. T. Mettetal and A. V. Oudenaarden, Nat. Genet. 40, 471 (2008).CrossRefGoogle Scholar
  4. [4]
    N. Q. Balaban, J. Merrin, R. Chait, L. Kowalik and S. Leibler, Science 305, 1622 (2004).ADSCrossRefGoogle Scholar
  5. [5]
    K. Kaneko, PLoS ONE 2, e434 (2007).ADSCrossRefGoogle Scholar
  6. [6]
    A. Wagner, Nature 24, 355 (2000).Google Scholar
  7. [7]
    T. Yomo, Y. Ito, K. Sato and K. Kaneko, Physica A 350, 1 (2005).ADSCrossRefGoogle Scholar
  8. [8]
    K. Sato, Y. Ito, T. Yomo and K. Kaneko, Proc. Natl. Acad. Sci. USA 100, 14086 (2003).ADSCrossRefGoogle Scholar
  9. [9]
    M. B. Elowitz, A. J. Levine, E. D. Siggia and P. S. Swain, Science 297, 1183 (2002).ADSCrossRefGoogle Scholar
  10. [10]
    A. P. Feinberg and R. A. Irizzary, Proc. Natl. Acad. Sci. USA 107, 1757 (2010).ADSCrossRefGoogle Scholar
  11. [11]
    M. F. Wernet, E. O. Mazzoni, A. Celik, D. M. Duncan, I. Duncan and C. Desplan, Nature 440, 174 (2006).ADSCrossRefGoogle Scholar
  12. [12]
    M. J. West-Eberhard, Developmental Plasticity and Evolution (Oxford University Press, Oxford, 2003).Google Scholar
  13. [13]
    J. M. Pedraza and A. V. Oudenaarden, Science 307, 1965 (2005).ADSCrossRefGoogle Scholar
  14. [14]
    N. Rosenfeld, J. W. Young, U. Alon, P. S. Swain and M. B. Elowitz, Science 307, 1962 (2005).ADSCrossRefGoogle Scholar
  15. [15]
    E. M. Ozbudak, M. Thattai, I. Kurtser, A. D. Grossman and A. V. Oudenaarden, Nat. Genet. 31, 69 (2002).CrossRefGoogle Scholar
  16. [16]
    K. Kaneko and C. Furusawa, J. Theor. Biol. 240, 78 (2006).CrossRefGoogle Scholar
  17. [17]
    Y. Ito, H. Toyota, K. Kaneko and T. Yomo, Molecular Systems Biology 5, 264 (2009).CrossRefGoogle Scholar
  18. [18]
    M. J. Baldwin, Am. Nat. 30, 441 (1896).CrossRefGoogle Scholar
  19. [19]
    G. G. Simpson, Evolution 7, 110 (1953).CrossRefGoogle Scholar
  20. [20]
    G. E. Hinton and S. J. Nowlan, Complex Syst. 1, 495 (1987).Google Scholar
  21. [21]
    H. Dopazo, M. B. Gordon, R. Perazzo and S. Riau-Gusman, Bull. Math. Biol. 63, 117 (2001).CrossRefGoogle Scholar
  22. [22]
    L. W. Ancel, Theor. Pop. Biol. 58, 307 (2000).CrossRefGoogle Scholar
  23. [23]
    I. Paenke, B. Sendhoff and T. J. Kawecki, Am. Nat. 170, E47 (2007).CrossRefGoogle Scholar
  24. [24]
    E. Borenstein, I. Meilijson and E. Ruppin, J. Evol. biol. 19, 1555 (2006).CrossRefGoogle Scholar
  25. [25]
    T. D. Price, A. Qvarnstrom and D. E. Irwin, Proc. R. Soc. London B 270, 1433 (2003).CrossRefGoogle Scholar
  26. [26]
    N. Saito, S. Ishihara and K. Kaneko, Phys. Rev. E 87, 052701 (2013).ADSCrossRefGoogle Scholar
  27. [27]
    C. W. Gardiner, Handbook of Stochastic Methods, 4th ed. (Springer, Berlin, 2009).zbMATHGoogle Scholar
  28. [28]
    Y-G. Kang and J-M. Park, J. Korean Phys. Soc. 71, 528 (2017).ADSCrossRefGoogle Scholar
  29. [29]
    G. W. A. Constable and A. J. McKane, Phys. Rev. E 89, 032141 (2014).ADSCrossRefGoogle Scholar
  30. [30]
    T. Funaki and H. Nagai, Stochastics 44, 1 (1993).Google Scholar
  31. [31]
    G. S. Katzenberger, Ann. Probab. 19, 1587 (1991).MathSciNetCrossRefGoogle Scholar
  32. [32]
    T. Biancalani, L. Dyson and A. J. McKane, Phys. Rev. Lett. 112, 038101 (2014).ADSCrossRefGoogle Scholar
  33. [33]
    F. Jafarpour, T. Biancalani and N. Goldenfeld, Phys. Rev. Lett. 115, 158101 (2015).ADSCrossRefGoogle Scholar
  34. [34]
    G. W. A. Constable, T. Rogers, A. J. McKane and C. E. Tarnita, Proc. Natl. Acad. Sci. U. S. A. 113, E4745 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.School of Computer EngineeringHanshin UniversityOsanKorea
  2. 2.Department of PhysicsThe Catholic University of KoreaBucheonKorea

Personalised recommendations