Journal of the Korean Physical Society

, Volume 73, Issue 11, pp 1764–1773 | Cite as

Precise System Models using Crystal Penetration Error Compensation for Iterative Image Reconstruction of Preclinical Quad-Head PET

  • Sooyoung Lee
  • Seungbin Bae
  • Hakjae Lee
  • Kwangdon Kim
  • Kisung Lee
  • Kyeong-Min Kim
  • Jaekeon Bae


A-PET is a quad-head PET scanner developed for use in small-animal imaging. The dimensions of its volumetric field of view (FOV) are 46.1 × 46.1 × 46.1 mm3 and the gap between the detector modules has been minimized in order to provide a highly sensitive system. However, such a small FOV together with the quad-head geometry causes image quality degradation. The main factor related to image degradation for the quad-head PET is the mispositioning of events caused by the penetration effect in the detector. In this paper, we propose a precise method for modelling the system at the high spatial resolution of the A-PET using a LOR (line of response) based ML-EM (maximum likelihood expectation maximization) that allows for penetration effects. The proposed system model provides the detection probability of every possible ray-path via crystal sampling methods. For the ray-path sampling, the sub-LORs are defined by connecting the sampling points of the crystal pair. We incorporate the detection probability of each sub-LOR into the model by calculating the penetration effect. For comparison, we used a standard LOR-based model and a Monte Carlo-based modeling approach, and evaluated the reconstructed images using both the National Electrical Manufacturers Association NU 4–2008 standards and the Geant4 Application for Tomographic Emission simulation toolkit (GATE). An average full width at half maximum (FWHM) at different locations of 1.77 mm and 1.79 mm are obtained using the proposed system model and standard LOR system model, which does not include penetration effects, respectively. The standard deviation of the uniform region in the NEMA image quality phantom is 2.14% for the proposed method and 14.3% for the LOR system model, indicating that the proposed model out-performs the standard LOR-based model.


Positron emission tomography (PET) Image reconstruction in medical imaging Detector modelling and simulations (interaction of photons with matter) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Yao, R. Lecomte and E. S. Crawford, Nucl. Med. Technol. 40, 157 (2012).CrossRefGoogle Scholar
  2. [2]
    H. Zhang, Q. Bao, N. T. Vu, R. W. Silverman, R. Taschereau, B. N. Berry-Pusey, A. Douraghy, F. R. Rannou, D. B. Stout and A. F. Chatziioannou, Mol Imaging Biol. 13, 949 (2011).CrossRefGoogle Scholar
  3. [3]
    Z. Gu, R. Taschereau, N. T. Vu, H. Wang, D. L. Prout, R. W. Silverman, B. Bai, D. B. Stout, M. E. Phelps and A. F. Chatziioannou, Phys Med Biol. 58, 3791 (2013).CrossRefGoogle Scholar
  4. [4]
    F. R. Rannou and A. F. Chatziioannou, in IEEE Nuclear Science Symposium and Medical Imaging Conference (Rome, Italy, October 16–22, 2004), p. 3433.Google Scholar
  5. [5]
    Q. Bao, F. R Rannou, R. Taschereau, D. B. Stout and A. F. Chatziioannou, in IEEE Nuclear Science Symposium Conference Record (Orlando, USA, October 24-November 1, 2009), p. 2733.Google Scholar
  6. [6]
    H. Tashima and T. Yamaya, Phys. Med. Biol. 61, 7205 (2016).CrossRefGoogle Scholar
  7. [7]
    H. Tashima, E. Yoshida, N Inadama, F. Nishikido, Y. Nakajima, H. Wakizaka, T. Shinaji, M. Nitta, S. Kinouchi, M. Suga, H. Haneishi, T. Inaniwa and T. Yamayal, Phys. Med. Biol. 61, 1795 (2016).CrossRefGoogle Scholar
  8. [8]
    V. Y. Panin, F. Kehren, C. Michel and M. Casey, IEEE Trans. on Med. Img. 25, 907 (2006).CrossRefGoogle Scholar
  9. [9]
    K. Lee, P. E. Kinahan, J. A. Fessler, R. S. Miyaoka, M. Janes and T. K. Lewellen, Phys. Med. Biol. 49, 4563 (2004).CrossRefGoogle Scholar
  10. [10]
    A. Iriarte, R. Marabini, S. Matej, C. O. S. Sorzano and R. M. Lewitt, Comput. Med. Imag. and Grap. 48, 30 (2016).CrossRefGoogle Scholar
  11. [11]
    D. Malakoff, Science 288, 248 (2000).CrossRefGoogle Scholar
  12. [12]
    D. J. Kadrmas, Phys. Med. Biol. 49, 4731 (2004).CrossRefGoogle Scholar
  13. [13]
    F. Jacobs, E. Sundermann, B. D. Sutter, M. Christiaens and I. Lemahieu, J. of Comput. and Inform. Tech. 6, 1 (1998).Google Scholar
  14. [14]
    P. Musmann, U. Pietrzyk, N. Schramm and S. Weber, IEEE Nuclear Science Symposium and Medical Imaging Conference (Fajardo, Puerto Rico, October 23–29, 2005), p. 1773.Google Scholar
  15. [15]
    M. Rafecas, G. Boning, B. J. Pichler, E. Lorenz, M. Schwaiger and S. I. Ziegler, IEEE Trans. on Nucl. Sci. 51, 149 (2004).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Sooyoung Lee
    • 1
  • Seungbin Bae
    • 2
  • Hakjae Lee
    • 2
  • Kwangdon Kim
    • 3
  • Kisung Lee
    • 4
  • Kyeong-Min Kim
    • 5
  • Jaekeon Bae
    • 5
  1. 1.Naval Infra. Team, Hanwha SystemsGumiKorea
  2. 2.ARALE laboratory Co., Ltd.SeoulKorea
  3. 3.Samsung ResearchSamsung Electronics Co., Ltd.SeoulKorea
  4. 4.School of Biomedical EngineeringKorea UniversitySeoulKorea
  5. 5.Radiation Device Research TeamKorea Institute of Radiological Medical ScienceSeoulKorea

Personalised recommendations