Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 11, pp 1750–1759 | Cite as

Development of the Full Package of Gyrotron Simulation Code

  • Ashwini Sawant
  • EunMi ChoiEmail author
Article
  • 19 Downloads

Abstract

A complete code-package for gyrotron simulation to analyze its performance is under development in UNIST, Korea. We first time report the present status of the code-package named as UNIST Gyrotron Design Tool (UGDT). It can perform design simulations for gyrotron’s interaction cavity, RF window, and the essential mode calculations including the study of mode competition. We will discuss about its salient features, theory, numerical implementation, and its calculation result for 95 GHz UNIST Gyrotron. Moreover, we will validate its capability to perform the mode competition calculation for fundamental and second harmonic modes.

Keywords

Gyrotron Gyrotron design code Harmonic operation Mode competition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. V. Kartikeyan, E. Borie and M. Thumm, Gyrotrons: high-power microwave and millimeter wave technology (Springer Science & Business Media, 2013).Google Scholar
  2. [2]
    G. S. Nusinovich, Introduction to the Physics of Gyrotrons (JHU Press, 2004).Google Scholar
  3. [3]
    A. W. Fliflet, R. C. Lee, S. H. Gold, W. M. Manheimer and E. Ott, Phys. Rev. A 43, 6166 (1991).ADSCrossRefGoogle Scholar
  4. [4]
    B. Levush and T. Antonsen, IEEE Trans. Plasma Sci. 18, 260 (1990).ADSCrossRefGoogle Scholar
  5. [5]
    S. Kern, Forschungszentrum Karlsruhe FZKA, 5837 (1996).Google Scholar
  6. [6]
    M. Botton, T. M. Antonsen, B. Levush, K. T. Nguyen and A. N. Vlasov, IEEE Trans. Plasma Sci. 26, 882 (1998).ADSCrossRefGoogle Scholar
  7. [7]
    R. Jain and M. V. Kartikeyan, Prog. Electromagn. Res. 22, 379 (2010).CrossRefGoogle Scholar
  8. [8]
    K. A. Avramides, I. G. Pagonakis, C. T. Iatrou and J. L. Vomvoridis, EPJ Web of Conferences 32, 04016 (2012).CrossRefGoogle Scholar
  9. [9]
    S. Alberti, T. Tran, K. Avramides, F. Li and J-P. Hogge, in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (2011).Google Scholar
  10. [10]
    U. Singh, N. Kumar, H. Khatun, N. Kumar, V. Yadav, A. Kumar, M. Sharma, M. Alaria, A. Bera and P. Jain, Fusion Eng. Des. 88, 2898 (2013).CrossRefGoogle Scholar
  11. [11]
    A. Singh, B. Ravi Chandra and P. K. Jain, Prog. Electromagn. Res. 42, 75 (2012).CrossRefGoogle Scholar
  12. [12]
    T. Saito, Y. Tatematsu, Y. Yamaguchi, S. Ikeuchi, S. Ogasawara, N. Yamada, R. Ikeda, I. Ogawa and T. Idehara, Phys. Rev. Lett. 109, 155001 (2012).ADSCrossRefGoogle Scholar
  13. [13]
    B. Danly and R. J. Temkin, The Physics of fluids 29, 561 (1986).ADSCrossRefGoogle Scholar
  14. [14]
    V. Bratman, A. Savilov and T. Chang, Radiophys. Quantum Electron. 58, 660 (2016).ADSCrossRefGoogle Scholar
  15. [15]
    J. Neilson, in Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics (2004).Google Scholar
  16. [16]
  17. [17]
    S. G. Kim, A. Sawant, I. Lee, D. Kim, M. Choe, J-H. Won, J. Kim, J. So, W. Jang and E. Choi, J. Infrared, Millimeter, Terahertz Waves 37, 209 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanKorea
  2. 2.Department of PhysicsUlsan National Institute of Science and Technology (UNIST)UlsanKorea

Personalised recommendations