Journal of the Korean Physical Society

, Volume 73, Issue 11, pp 1735–1743 | Cite as

Theoretical Study of Auger Recombination of Excitons in Monolayer Transition-metal Dichalcogenides

  • Hyun Cheol LeeEmail author


Excitons are the most prominent features of the optical properties of monolayer transition-metal dichalcogenides(TMDC). In view of optoelectronics it is very important to understand the decay mechanisms of the excitons of these materials. Auger recombination of excitons are regarded as one of the dominant decay processes. In this paper the Auger constant of recombination is computed based on the approach proposed by Kavoulakis and Baym. We obtain both temperature dependent (from type A, A’ processes) and temperature independent (from type B, B’ processes) contributions, and a numerical estimate of theoretical result yields the value of constant in the order of 10−2 cm2s−1, being consistent with existing experimental data. This implies that Auger decay processes severely limit the photoluminescence yield of TMDC-based optoelectronic devices.


Transition-metal dichalcogenides Exciton Auger recombination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Proc. Natl. Aca. Sci.U.S.A. 102, 10451 (2005).ADSCrossRefGoogle Scholar
  2. [2]
    A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).CrossRefGoogle Scholar
  3. [3]
    Y. Yoon, K. Ganapathi and S. Salahuddin, Nano Lett. 11, 3768 (2011).ADSCrossRefGoogle Scholar
  4. [4]
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti and A. Kis, Nat. Nanotech. 6, 147 (2011).ADSCrossRefGoogle Scholar
  5. [5]
    D. Xiao, G. B. Liu, W. Feng, X. Xu and W. Yao, Phys. Rev. Lett. 108, 196802 (2012).ADSCrossRefGoogle Scholar
  6. [6]
    X. Xu, W. Yao, D. Xiao and T. F. Heinz, Nat. Phys. 10, 343 (2014).CrossRefGoogle Scholar
  7. [7]
    K. F. Mak, C. Lee, J. Hone, J. Shan and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).ADSCrossRefGoogle Scholar
  8. [8]
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C-Y. Chim, G. Galii and F. Wang, Nano Lett. 10, 1271 (2010).ADSCrossRefGoogle Scholar
  9. [9]
    D. Y. Qiu, F. H. da Jornada and S. G. Louie, Phys. Rev. Lett. 111, 216805 (2013).ADSCrossRefGoogle Scholar
  10. [10]
    A. Ramasubramaniam, Phys. Rev. B 86, 115409 (2012).ADSCrossRefGoogle Scholar
  11. [11]
    A. Chernikov, T. C. Berkelbach, H. M. Hill, A. Rigosi, Y. Li, O. B. Aslan, D. R. Reichman, M. S. Hybertsen and T. F. Heinz, Phys. Rev. Lett. 113, 076802 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    D. Sun, Y. Rao, G. A. Reider, G. Chen, Y. You, L. Brézin, A. R. Harutyunyan and T. Heinz, Nano Lett. 14, 5625 (2014).ADSCrossRefGoogle Scholar
  13. [13]
    M. Amani, P. Taheri, T. Addou, G. H. Ahn, D. Kiriya, D-H. Lien, J. W. Ager, R. M. Wallace and A. Javey, Nano Lett. 16, 2786 (2016).ADSCrossRefGoogle Scholar
  14. [14]
    Y. Lee, G. Ghimire, S. Roy, Y. Kim, C. Seo, A. K. Sood, J. I. Jang and J. Kim, ACS Photonics 5, 2904 (2018).CrossRefGoogle Scholar
  15. [15]
    G. M. Kavoulakis and G. Baym, Phys. Rev. B 54, 16625 (1996).ADSCrossRefGoogle Scholar
  16. [16]
    G. Mahan, Many-Particle Physics (Plenum, New York, 2000), p. 592.CrossRefGoogle Scholar
  17. [17]
    Y. Yu, Y. Yu, Y. Cai, W. Li, A. Gurarslan, H. Peelasers, D. E. Aspnes, G. G. Van de Walle, N. V. Nguyen, Y-W. Zhang and L. Cao, Sci. Rep. 5, 16996 (2015).ADSCrossRefGoogle Scholar
  18. [18]
    D. Y. Qiu, F. H. da Jornada and S. G. Louie, Phys. Rev. Lett. 111, 216805 (2013).ADSCrossRefGoogle Scholar
  19. [19]
    F. Wang, Y. Wu, M. S. Hybertsen and T. F. Heinz, Phys. Rev. B 73, 245424 (2006).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsSogang UniversitySeoulKorea

Personalised recommendations