Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 11, pp 1729–1734 | Cite as

Temperature Driven Phase Transition of Organic-Inorganic Halide Perovskite Single Crystals

  • Hye Ryung Byun
  • Hyo In Kim
  • Su Jeong Byun
  • Dae Young Park
  • Mun Seok Jeong
  • Clare Chisu Byeon
Article
  • 36 Downloads

Abstract

Organic-inorganic halide perovskite single crystals undergo phase transition of being cubic, tetragonal, or orthorhombic depending on the temperature. We investigated the CH3NH3PbBr3−xIx single crystals grown by the inverse temperature crystallization method with temperature-dependent UV-Vis absorption and photoluminescence. From the temperature-dependent absorption measurement, the optical band gap is extracted by derivation of absorption spectrum fitting and Tauc plot. In our results, CH3NH3PbBr3−xIx single crystals show that an abrupt change in optical band gap, PL peak position and intensity appears around 120 K - 170 K regions, indicating the phase transition temperature.

Keywords

Perovskite single crystal Temperature-dependent absorption Photoluminescence Phase transition Derivation of absorption spectrum fitting (DASF) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. A. Green, A. Ho-Baillie and H. J. Snaith, Nat. Photon. 8, 506 (2014).ADSCrossRefGoogle Scholar
  2. [2]
    R. J. Sutton et al., Adv. Energy Mater. 6, 1502458 (2016).CrossRefGoogle Scholar
  3. [3]
    G. E. Eperon et al., Energy Environ. Sci. 7, 982 (2014).CrossRefGoogle Scholar
  4. [4]
    A. Y. Lee, D. Y. Park and M. S. Jeong, J. Alloys and Compounds 738, 239 (2018).CrossRefGoogle Scholar
  5. [5]
    C. Wehrenfenning, G. E. Eperon, M. B. Johnston, H. J. Snaith and L. M. Herz, Adv. Mater. 26, 1584 (2014).CrossRefGoogle Scholar
  6. [6]
    M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science 338, 643 (2012).ADSCrossRefGoogle Scholar
  7. [7]
    W. Nie et al., Science 347, 522 (2015).ADSCrossRefGoogle Scholar
  8. [8]
    A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle Scholar
  9. [9]
    W. S. Yang et al., Science 356, 1376 (2017).ADSCrossRefGoogle Scholar
  10. [10]
    F. Brivio, A. B. Walker and A. Walsh, APL Mater. 1, 042111 (2013).ADSCrossRefGoogle Scholar
  11. [11]
    D. Weber, Inst. Anorg. Chem. Univ. Stutt. 33b, 1443 (1978).Google Scholar
  12. [12]
    G. Niu, X. Guo and L. Wang, J. Mater. Chem. A 3, 8970 (2015).CrossRefGoogle Scholar
  13. [13]
    J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett. 13, 1764 (2013).ADSCrossRefGoogle Scholar
  14. [14]
    Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao and J. Huang, Science 347, 967 (2015).ADSCrossRefGoogle Scholar
  15. [15]
    J. A. Christians, J. S. Manser and P. V. Kamat, J. Phys. Chem. Lett. 6, 2086 (2015).CrossRefGoogle Scholar
  16. [16]
    R. L. Milot, G. E. Eperon, H. J. Snaith, M. B. Johnston and L. M. Herz, Adv. Funct. Mater. 25, 6218 (2015).CrossRefGoogle Scholar
  17. [17]
    K. P. Ong, T. W. Goh, Q. Xu and A. Huan, J. Phys. Chem. Lett. 6, 681 (2015).CrossRefGoogle Scholar
  18. [18]
    Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya and Y. Kanemitsu, J. Am. Chem. Soc. 136, 11610 (2014).CrossRefGoogle Scholar
  19. [19]
    Z. Chen, Q. Dong, Y, Liu, C. Bao, Y. Fang, Y, Lin, S. Tang, Q. Wang, X. Xiao, Y. Bai, Y. Deng and J. Huang, Nat. Comms. 8, 1890 (2017).ADSCrossRefGoogle Scholar
  20. [20]
    D. Souri and Z. E. Tahan, Appl. Phys. B 119, 273 (2015).ADSCrossRefGoogle Scholar
  21. [21]
    D. Souri and K. Shomalian, J. Non-Cryst. Solids 355, 1597 (2009).ADSCrossRefGoogle Scholar
  22. [22]
    D. Souri, Measurement 44, 717 (2011).CrossRefGoogle Scholar
  23. [23]
    D. Souri, M. Mohammadi and H. Zaliani, Electron. Mater. Lett. 10, 1103 (2014).ADSCrossRefGoogle Scholar
  24. [24]
    L. E. Alarcon, A. Arrieta, E. Camps, S. Muhl, S. Rudil and E. V. Santiago, Appl. Surf. Sci. 254, 412 (2007).ADSCrossRefGoogle Scholar
  25. [25]
    D. Souri and S. A. Salehizadeh, J. Mater. Sci. 44, 5800 (2009).ADSCrossRefGoogle Scholar
  26. [26]
    N. Chopra, A. Mansingh and G. K. Chadha, J. Non-Cryst. Solids 126, 194 (1990).ADSCrossRefGoogle Scholar
  27. [27]
    G. Turky and M. Dawy, Mater. Chem. Phys. 77, 48 (2002).CrossRefGoogle Scholar
  28. [28]
    J. Tauc, Materials Research Bulletin 3, 37 (1968).CrossRefGoogle Scholar
  29. [29]
    E. A. Davis and N. F. Mott, Philosophical Magazine A 22, 903 (1970).ADSCrossRefGoogle Scholar
  30. [30]
    A. Poglitsch and D. Weber, J. Chem. Phys. 87, 6373 (1987).ADSCrossRefGoogle Scholar
  31. [31]
    C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Inorg. Chem. 52, 9019 (2013).CrossRefGoogle Scholar
  32. [32]
    C. Wolf and T-W. Lee, Mater. Today Energy 7, 199 (2018).CrossRefGoogle Scholar
  33. [33]
    C. Barugkin, J. Cong, T. Duong, S. Rahman, H. T. Nguyen, D. Macdonald, T. P. White and K. R. Catchpole, J. Phys. Chem. Lett. 6, 767 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Hye Ryung Byun
    • 1
  • Hyo In Kim
    • 1
  • Su Jeong Byun
    • 1
  • Dae Young Park
    • 1
  • Mun Seok Jeong
    • 1
  • Clare Chisu Byeon
    • 2
  1. 1.Department of Energy ScienceSungkyunkwan UniversitySuwonKorea
  2. 2.School of Mechanical EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations