Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 11, pp 1712–1715 | Cite as

Deposition Pressure Dependent Electric Properties of (Hf, Zr)O2 Thin Films Made by RF Sputtering Deposition Method

  • S. E. Moon
  • J. H. Kim
  • J. P. Im
  • J. Lee
  • S. Y. Im
  • S. H. Hong
  • S. Y. Kang
  • S. M. Yoon
Article
  • 29 Downloads

Abstract

To study the applications for ferroelectric non-volatile memory and ferroelectric memristor, etc., deposition pressure dependent electric the properties of (Hf, Zr)O2 thin films by RF sputtering deposition method were investigated. The bottom electrode was TiN thin film to produce stress effect on the formation of orthorhombic phase and top electrode was Pt thin film by DC sputtering deposition. Deposition pressure was varied along with the same other deposition conditions, for example, sputtering power, target to substrate distance, post-annealing temperature, annealing gas, annealing time, etc. The structural and electric properties of the above thin films were investigated. As a result, it is confirmed that the electric properties of the (Hf, Zr)O2 thin films depend on the deposition pressure which affects structural properties of the thin films, such as, structural phase, ratio of the constituents, etc.

Keywords

(Hf, Zr)O2 Sputtering Deposition pressure Ferroelectric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. W. Martin and A. M. Rappe, Nature Reviews Materials 2, 16087 (2016).ADSCrossRefGoogle Scholar
  2. [2]
    N. Settera et al., J. Appl. Phys. 100, 051606 (2006).ADSCrossRefGoogle Scholar
  3. [3]
    Z. Fan, J. Chen and J. Wang, JOURNAL OF ADVANCED DIELECTRICS 6, 1630003 (2016).ADSCrossRefGoogle Scholar
  4. [4]
    J. Müller et al., Nano letters 12, 4318 (2012).ADSCrossRefGoogle Scholar
  5. [5]
    F. Ambriz-Vargas, R. Thomas and A. Ruediger, Frontiers in Materials Processing, Applications (Springer Nature Singapore Pte Ltd., 2018).Google Scholar
  6. [6]
    K. D. Kim et al., Journal of Materials Chemistry C 4, 6864 (2016).CrossRefGoogle Scholar
  7. [7]
    T. Nishimura et al., Japanese Journal of Applied Physics 55, 08PB01 (2016).CrossRefGoogle Scholar
  8. [8]
    T. Kiguchi et al., Journal of the Ceramic Society of Japan 124, 689 (2016).CrossRefGoogle Scholar
  9. [9]
    T. Shimizu1 et al., Japanese Journal of Applied Physics 53, 09PA04 (2014).CrossRefGoogle Scholar
  10. [10]
    V. Dave, P. Dubey and H.O. Gupta, Thin Solid Films 549, 2 (2013).ADSCrossRefGoogle Scholar
  11. [11]
    S. Clima et al., Appl. Phys. Lett. 104, 092906 (2014).ADSCrossRefGoogle Scholar
  12. [12]
    J. Müller et al., ESC Trans. 64, 159 (2014).Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • S. E. Moon
    • 1
    • 2
  • J. H. Kim
    • 1
  • J. P. Im
    • 1
  • J. Lee
    • 1
  • S. Y. Im
    • 1
  • S. H. Hong
    • 1
  • S. Y. Kang
    • 1
  • S. M. Yoon
    • 3
  1. 1.ICT Materials Research GroupElectronics and Telecommunications Research InstituteDaejeonKorea
  2. 2.Department of Advanced EngineeringUniversity of Science and TechnologyDaejeonKorea
  3. 3.Advanced Materials Engineering for Information & ElectronicsKyung Hee UniversityYonginKorea

Personalised recommendations