Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 11, pp 1698–1702 | Cite as

Surface-Plasmon Assisted Transmission Through an Ultrasmall Nanohole of ~ 10 nm with a Bull’s Eye Groove

  • Geon Woo Kim
  • Jae-Hyeon Ko
  • Doo Jae Park
  • Seong Soo Choi
  • Hyuntae Kim
  • Soo Bong Choi
Article

Abstract

We simulate the light transmission through an extremely small nanoscale aperture having a 10 nm diameter punctured in a metal film positioned at the center of a plasmonic bull’s eye grating. A considerable directive emission of transmitted light with a divergence angle of 5.7 degrees was observed at 10 μm from the nanohole opening at the frequency of surface plasmon polariton excitation, an confirmed by measuring the distance dependent transmission amplitude. Observations of the electric field in cross-sectional, near-field, and far-field views near-field enhancement associated with the surface plasmon excitation, and the interference of the electric field light through the nanohole in the near-field region is responsible for such a considerable directive emission.

Keywords

Plasmons on surface and interface Optical properties of nanostructures Optical diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, Nature 391, 667 (1998).ADSCrossRefGoogle Scholar
  2. [2]
    D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang et al., Phys. Rev. B 77, 115451 (2008).ADSCrossRefGoogle Scholar
  3. [3]
    Y. Hu, G-Q. Liu, Z-Q. Liu, X-S. Liu, X-N. Zhang et al., Plasmonics 10, 483 (2015).CrossRefGoogle Scholar
  4. [4]
    T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux et al., Nano Letters 10, 3123 (2010).ADSCrossRefGoogle Scholar
  5. [5]
    H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno et al., Science 297, 820 (2002).ADSCrossRefGoogle Scholar
  6. [6]
    S. S. Choi, S-J. Oh, C. H. Han, D. J. Park, S. B. Choi et al., J. Vac. Sci. Tech. B 35, 04F107 (2017).CrossRefGoogle Scholar
  7. [7]
    H. A. Bethe, Phys. Rev. 66, 163 (1944).ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    C. Ropers, D. J. Park, G. Stibenz, G. Steinmeyer, J. Kim et al., Phys. Rev. Lett. 94, 113901 (2005).ADSCrossRefGoogle Scholar
  9. [9]
    S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong et al., Appl. Phys. Lett. 94, 063115 (2009).ADSCrossRefGoogle Scholar
  10. [10]
    S. B. Choi, D. J. Park, D. S. Kim, M. S. Jeong and C. C. Byeon, J. Korean Phys. Soc. 53, 713 (2008).ADSCrossRefGoogle Scholar
  11. [11]
    D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim et al., Appl. Phys. Lett. 93, 073109 (2008).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Geon Woo Kim
    • 1
  • Jae-Hyeon Ko
    • 1
  • Doo Jae Park
    • 1
  • Seong Soo Choi
    • 2
  • Hyuntae Kim
    • 3
  • Soo Bong Choi
    • 3
  1. 1.Department of PhysicsHallym UniversityChuncheonKorea
  2. 2.Research Center for Nanobio ScienceSun Moon UniversityAhsanKorea
  3. 3.Department of PhysicsIncheon National UniversityIncheonKorea

Personalised recommendations