Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 11, pp 1657–1662 | Cite as

Optical Performance Degradation Effects by Fabrication Errors of Circular-type Computer Generated Holograms

  • Young-Gwang Kim
  • Hyug-Gyo Rhee
  • Young-Sik Ghim
Article
  • 7 Downloads

Abstract

A null test method which relies on a computer generated hologram (CGH) is widely used to measure a large aspheric surface. For precise measurements of the surface shape of an aspheric optics, the CGH must precisely generate a wavefront that can fit on the ideal surface shape of the aspheric optics. If fabrication errors arise in the CGH, an unwanted wavefront will be generated and the measuring result will lack trustworthiness. Thus far, there has been limited research on wavefronts generated by CGH using only linear-type binary grating models. In this study, a theoretical error model of a circular-type zone plate, the most commonly used types for CGH patterns, is suggested. The proposed error model is checked by simulations and experiments.

Keywords

Computer generated hologram Optical performance degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Reichelt, R. Freimann and H. J. Tiziani, Optics communications 200, 107 (2001).ADSCrossRefGoogle Scholar
  2. [2]
    J. M. Asfour and A. G. Poleshchuk, Journal of Optical Society of America 23, 172 (2006).ADSCrossRefGoogle Scholar
  3. [3]
    J. C. Wyant and V. P. Bennett, Appl. Opt. 11, 2833 (1972).ADSCrossRefGoogle Scholar
  4. [4]
    H. J. Tiziani, S. Reichelt, C. Pruss, M. Rocktaeschel and U. Hofbauer, Proc. SPIE 4440, 109 (2001).ADSCrossRefGoogle Scholar
  5. [5]
    H. G. Rhee, J. B. Song, D. I. Kim, Y. W. Lee and K. S. Ha, J. Korean Phys. Soc. 50, 1032 (2007).ADSCrossRefGoogle Scholar
  6. [6]
    H. G. Rhee and Y. W. Lee, Opt. Express 18, 1734 (2010).ADSCrossRefGoogle Scholar
  7. [7]
    N. R. Heckenberg, R. McDuff, C. P. Smith and A. G. White, Opt. Letters 17, 221 (1992).ADSCrossRefGoogle Scholar
  8. [8]
    M. V. R. K. Murty, J. Opt. Soc. America 53, 568 (1963).ADSCrossRefGoogle Scholar
  9. [9]
    T. Honda, Y. Kawamoto, H. Guan, M. Yomaguchi and N. Ohyama, Proc. SPIE 1720, 305 (1992).ADSCrossRefGoogle Scholar
  10. [10]
    M. Haruna, M. Takahashi, K. Wakagayashi and H. Nishigara, Appl. Opt. 29, 5120 (1990).ADSCrossRefGoogle Scholar
  11. [11]
    M. T. Gale, M. Rossi, J. Pedersen and H. Schutz, Optical Engineering 33, 3556 (1994).ADSCrossRefGoogle Scholar
  12. [12]
    Y. Xie, Z. Lu and F. Li, Opt. Express 12, 1810 (2004).ADSCrossRefGoogle Scholar
  13. [13]
    H. G. Rhee and Y. W. Lee, J. Korean Phys. Soc. 58, 1120 (2011).ADSCrossRefGoogle Scholar
  14. [14]
    Y. G. Kim, H. G. Rhee, Y. S. Ghim, H. S. Yang and Y. W. Lee, Opt. Express 25 1636 (2017).ADSCrossRefGoogle Scholar
  15. [15]
    P. Zhou and J. H. Burge, Opt. Express 15, 15410 (2007).ADSCrossRefGoogle Scholar
  16. [16]
    P. Zhou and J. H. Burge, Appl. Opt. 46, 657 (2007).ADSCrossRefGoogle Scholar
  17. [17]
    W. Cai, P. Zhou, C. Zhao and J. H. Burge, Appl. Opt. 53, 2477 (2014).ADSCrossRefGoogle Scholar
  18. [18]
    J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 3.Google Scholar
  19. [19]
    D. Malacara, Optical Shop Testing, 2nd ed. (Wiley, 1992), Chap. 4.Google Scholar
  20. [20]
    J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 2.Google Scholar
  21. [21]
    J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996), Chap. 4.Google Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • Young-Gwang Kim
    • 1
    • 2
  • Hyug-Gyo Rhee
    • 1
    • 2
  • Young-Sik Ghim
    • 1
    • 2
  1. 1.Department of Science of MeasurementUniversity of Science and Technology (UST)DaejeonKorea
  2. 2.Space Optics Team, Advanced Instrumentation InstituteKorea Research Institute of Standards and Science (KRISS)DaejeonKorea

Personalised recommendations