Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 11, pp 1625–1630 | Cite as

Neutrinoless Double Beta Decay and Light Sterile Neutrino

  • C. H. Jang
  • B. J. Kim
  • Y. J. Ko
  • K. SiyeonEmail author
Article
  • 12 Downloads

Abstract

The recent neutrino experiment results show a preference on normal mass ordering of neutrinos. The global efforts to search for neutrinoless double beta decays undergo a broad gap with the approach to the prediction in three-neutrino framework based on the normal ordering. Current research is to show that it is possible to find a neutrinoless double beta decay signal even with normal ordered neutrino masses. We propose the existence of light sterile neutrino as a solution to the higher effective mass of electron neutrino expected by experiments under operation. A few short-baseline oscillation experiments gave rise to exclusion bound to the mass of sterile neutrino and its mixing with the lightest neutrino. It is demonstrated that results of neutrinoless double beta decays can also narrow down the ranges of the mass and the mixing angle of sterile neutrino.

Keywords

Neutrinoless double-beta decay Majorana phase Sterile neutrino 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Giunti and C. W. Kim, Fundamentals of neutrino physics and astrophysics (Oxford Press, 2009).Google Scholar
  2. [2]
    J. D. Vergados, Phys. Rept. 361, 1 (2002).ADSCrossRefGoogle Scholar
  3. [3]
    J. Barea, J. Kotila and F. Iachello, Phys. Rev. Lett. 109, 042501 (2012).ADSCrossRefGoogle Scholar
  4. [4]
    S. M. Bilenky and C. Giunti, Mod. Phys. Lett. A 27, 1230015 (2012).ADSCrossRefGoogle Scholar
  5. [5]
    M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986).ADSCrossRefGoogle Scholar
  6. [6]
    J. A. Harvey and M. S. Turner, Phys. Rev. D 42, 3344 (1990)ADSCrossRefGoogle Scholar
  7. 6a.
    H. B. Nielsen and Y. Takanishi, Phys. Lett. B 507, 241 (2001).ADSCrossRefGoogle Scholar
  8. [7]
    E. W. Kolb and S. Wolfram, Nucl. Phys. B 172, 224 (1980) [Erratum-ibid. B 195, 542 (1982)].ADSCrossRefGoogle Scholar
  9. [8]
    V. Barger, D. A. Dicus, H. J. He and T. J. Li, Phys. Lett. B 583, 173 (2004).ADSCrossRefGoogle Scholar
  10. [9]
    M. A. Luty, Phys. Rev. D 45, 455 (1992); Phys. Lett. B 345, 248 (1995) [Erratum-ibid. B 382, 447 (1996)]ADSCrossRefGoogle Scholar
  11. 9a.
    L. Covi, E. Roulet and F. Vissani, Phys. Lett. B 384, 169 (1996)ADSCrossRefGoogle Scholar
  12. 9b.
    W. Buchmuller and M. Plumacher, Phys. Lett. B 431, 354 (1998)ADSCrossRefGoogle Scholar
  13. 9c.
    W. Buchmuller and M. Plumacher, Int. J. Mod. Phys. A 15, 5047 (2000).ADSGoogle Scholar
  14. [10]
    T. Endoh, S. Kaneko, S. K. Kang, T. Morozumi and M. Tanimoto, Phys. Rev. Lett. 89, 231601 (2002)ADSCrossRefGoogle Scholar
  15. 10a.
    S. Davidson and A. Ibarra, Nucl. Phys. B 648, 345 (2003)ADSCrossRefGoogle Scholar
  16. 10b.
    G. C. Branco, R. Gonzalez Felipe, F. R. Joaquim, I. Masina, M. N. Rebelo and C. A. Savoy, Phys. Rev. D 67, 073025 (2003)ADSCrossRefGoogle Scholar
  17. 10c.
    A. de Gouvea, B. Kayser and R. N. Mohapatra, Phys. Rev. D 67, 053004 (2003)ADSCrossRefGoogle Scholar
  18. 10d.
    S. Pascoli, S. T. Petcov and W. Rodejohann, Phys. Rev. D 68, 093007 (2003)ADSCrossRefGoogle Scholar
  19. 10e.
    W. Grimus and L. Lavoura, J. Phys. G 30, 1073 (2004)ADSCrossRefGoogle Scholar
  20. 10f.
    A. Ibarra and G. G. Ross, Phys. Lett. B 591, 285 (2004)ADSCrossRefGoogle Scholar
  21. 10g.
    S. Davidson and R. Kitano, JHEP 0403, 020 (2004)ADSCrossRefGoogle Scholar
  22. 10h.
    M. C. Chen and K. T. Mahanthappa, Phys. Rev. D 71, 035001 (2005)ADSCrossRefGoogle Scholar
  23. 10i.
    S. Pascoli, S. T. Petcov and A. Riotto, Nucl. Phys. B 774, 1 (2007).ADSCrossRefGoogle Scholar
  24. [11]
    K. Siyeon, J. Korean Phys. Soc. 69, 1638 (2016).ADSCrossRefGoogle Scholar
  25. [12]
    A. Gando et al. [KamLAND-Zen Collaboration], Phys. Rev. Lett. 117, 082503 (2016), Addendum: [Phys. Rev. Lett. 117, 109903 (2016)].ADSCrossRefGoogle Scholar
  26. [13]
    J. B. Albert et al. [EXO Collaboration], Phys. Rev. Lett. 120, 072701 (2018).ADSCrossRefGoogle Scholar
  27. [14]
    C. Alduino et al. [CUORE Collaboration], Phys. Rev. Lett. 120, 132501 (2018).ADSCrossRefGoogle Scholar
  28. [15]
    M. Agostini et al. [GERDA Collaboration], Phys. Rev. Lett. 120, 132503 (2018).ADSCrossRefGoogle Scholar
  29. [16]
    S. I. Alvis et al. [Majorana Collaboration], Phys. Rev. Lett. 120, 211804 (2018).ADSCrossRefGoogle Scholar
  30. [17]
    R. Arnold et al., Eur. Phys. J. C 78, 821 (2018).ADSCrossRefGoogle Scholar
  31. [18]
    V. Alenkov et al. [AMoRE Collaboration], arXiv:1512. 05957 [physics.ins-det].Google Scholar
  32. [19]
    J. Y. Lee et al., IEEE Trans. Nucl. Sci. 63, 543 (2016).ADSCrossRefGoogle Scholar
  33. [20]
    A. Luqman et al., Nucl. Instrum. Meth. A 855, 140 (2017).ADSCrossRefGoogle Scholar
  34. [21]
    P. Adamson et al. [NOvA Collaboration], Phys. Rev. Lett. 118, 231801 (2017).ADSCrossRefGoogle Scholar
  35. [22]
    K. Abe et al. [T2K Collaboration], Phys. Rev. Lett. 121, 171802 (2018).ADSCrossRefGoogle Scholar
  36. [23]
    P. Adamson et al. [Daya Bay and MINOS Collaborations], Phys. Rev. Lett. 117, 151801 (2016) Addendum: [Phys. Rev. Lett. 117, 209901 (2016)].ADSCrossRefGoogle Scholar
  37. [24]
    Y. J. Ko et al. [NEOS Collaboration], Phys. Rev. Lett. 118, 121802 (2017).ADSCrossRefGoogle Scholar
  38. [25]
    J. Ashenfelter et al. [PROSPECT Collaboration], arXiv: 1806.02784 [hep-ex].Google Scholar
  39. [26]
    Y. Abreu et al. [SoLid Collaboration], JINST 12, P04024 (2017).CrossRefGoogle Scholar
  40. [27]
    I. Alekseev et al. [DANSS Collaboration], Phys. Lett. B, 038 (2018)Google Scholar
  41. [28]
    H. Almazán et al. [STEREO Collaboration], Phys. Rev. Lett. 121, 161801 (2018).ADSCrossRefGoogle Scholar
  42. [29]
    S. R. Elliott, A. A. Hahn and M. K. Moe, Phys. Rev. Lett. 59, 2020 (1987).ADSCrossRefGoogle Scholar
  43. [30]
    A. S. Barabash, Phys. Rev. C 81, 035501 (2010).ADSCrossRefGoogle Scholar
  44. [31]
    R. Saakyan, Ann. Rev. Nucl. Part. Sci. 63, 503 (2013).ADSCrossRefGoogle Scholar
  45. [32]
    A. Faessler, V. Rodin and F. Simkovic, J. Phys. G 39, 124006 (2012).ADSCrossRefGoogle Scholar
  46. [33]
    M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, 030001 (2018).ADSCrossRefGoogle Scholar
  47. [34]
    G. Drexlin [KATRIN Collaboration], Nucl. Phys. Proc. Suppl. 145, 263 (2005).CrossRefGoogle Scholar
  48. [35]
    C. Giunti and E. M. Zavanin, JHEP 1507, 171 (2015).ADSCrossRefGoogle Scholar
  49. [36]
    G. Mention, M. Fechner, T. Lasserre, T. A. Mueller, D. Lhuillier, M. Cribier and A. Letourneau, Phys. Rev. D 83, 073006 (2011).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Physics DepartmentChung-Ang UniversitySeoulKorea

Personalised recommendations