Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 11, pp 1612–1618 | Cite as

The Influence of Confining Parameters on the Ground State Properties of Interacting Electrons in a Two-dimensional Quantum Dot with Gaussian Potential

  • Berna GülverenEmail author
Article
  • 13 Downloads

Abstract

In this work, the ground-state properties of an interacting electron gas confined in a twodimensional quantum dot system with the Gaussian potential v(r) = V0(1 − exp(−r2/p)), where V0 and p are confinement parameters, are determined numerically by using the Thomas-Fermi approximation. The shape of the potential is modified by changing the V0 and p values, and the influence of the confining potential on the system’s properties, such as the chemical energy, the density profile, the kinetic energy, the confining energy, etc., is analyzed for both the non-interacting and the interacting cases. The results are compared with those calculated for a harmonic potential, and excellent agreement is obtained in the limit of high p values for both the non-interacting and the interacting cases.

Keywords

Quantum dot Electron gas Thomas-Fermi approximation Gaussian potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    X. Leyronas and M. Combescot, Solid State Comm. 119, 631 (2001).ADSCrossRefGoogle Scholar
  2. [2]
    D. Bimberg, M. Grundmann and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999).Google Scholar
  3. [3]
    M. Russ, A. Lorke, D. Reuter and P. Schafmeister, Physica E 22, 506 (2004).ADSCrossRefGoogle Scholar
  4. [4]
    Y. Xiong and X. Zhang, IEE J. Quantum Electronics 54, 2000109 (2018).Google Scholar
  5. [5]
    C. M. Imperato, G. A. Ranepura, L. I. Deych and I. L Kuskovsky, J. of Electronic Mater. 47, 4325 (2018).ADSCrossRefGoogle Scholar
  6. [6]
    I. D. Amico, Microelect. J. 37, 1440 (2006).CrossRefGoogle Scholar
  7. [7]
    M. Sahin, J. of Phys. Condens. Matter 30, 205301 (2018).ADSCrossRefGoogle Scholar
  8. [8]
    A. E. Kavruk, M. Sahin and U. Atav, J. Phys. D:Appl. Phys. 47, 295302 (2014).CrossRefGoogle Scholar
  9. [9]
    A. Bera, A. Ghosh and M. Ghosh, Opt. Mater. 69, 352 (2017).ADSCrossRefGoogle Scholar
  10. [10]
    M. Godlewski, V. Y. Ivanov, P. J. Bergman, B. Monemar, Z. Golacki and G. Karczewski, J. Alloys and Compd. 341, 8 (2002).CrossRefGoogle Scholar
  11. [11]
    J. S. Kim, H. Kang, C. C. Byeon, M. S. Jeong and S-Y. Yim, J. Korean Phys. Soc. 55, 1051 (2009).ADSCrossRefGoogle Scholar
  12. [12]
    J. Drbohlavova, V. Adam, R. Kizek and J. Hubalek, Int. J. Mol. Sci. 10, 656 (2009).CrossRefGoogle Scholar
  13. [13]
    L. Jacak, P. Hawrylak and A. Wojs, Quantum Dots (Berlin, Springer, 1998).CrossRefGoogle Scholar
  14. [14]
    L. Jacak, Eur. J. Phys. 21, 487 (2000).ADSCrossRefGoogle Scholar
  15. [15]
    N. F. Johnson, J. of Phys.: Condens. Matter 7, 965 (1995).ADSGoogle Scholar
  16. [16]
    E. H. Lieb, J. P. Solovej and J. Yngvason, Phys. Rev. B 51, 10646 (1995).ADSCrossRefGoogle Scholar
  17. [17]
    J-B. Xia, Phys. Rev. B 40, 8500 (1989).ADSCrossRefGoogle Scholar
  18. [18]
    P. C. Sercel and K. J. Vahala, Phys. Rev. B 42 3690 (1990).ADSCrossRefGoogle Scholar
  19. [19]
    M. Wagner, U. Merkt and A. V. Chaplik, Phys. Rev. B 45, 1951 (1992).ADSCrossRefGoogle Scholar
  20. [20]
    J. Tulkki and A. Henamaki, Phys. Rev. B 52, 8239 (1995).ADSCrossRefGoogle Scholar
  21. [21]
    B. Gülveren, Solid State Sci. 14, 94 (2012).ADSCrossRefGoogle Scholar
  22. [22]
    D. G. Austing, S. Sasaki, S. Tarucha, S. M. Reimann, M. Koskinen and M. Manninen, Physica B 272, 68 (1999).ADSCrossRefGoogle Scholar
  23. [23]
    A. Wojs, P. Hawrylak, S. Fafarad and L. Jacak, Phys. Rev. B 54, 5604 (1996).ADSCrossRefGoogle Scholar
  24. [24]
    D. Heitmann, K. K. Bollweg, V. Gudmundsson, T. Kurth and S. P. Riege, Physica E 1, 204 (1997).ADSCrossRefGoogle Scholar
  25. [25]
    B. T. Miller, W. Hansen, S. Manus, R. J. Luyken, A. Lorke, J. P. Kotthaus, S. Huant, G. Mediros-Ribeiro and P. M. Petroff, Phys. Rev. B 56, 6764 (1997).ADSCrossRefGoogle Scholar
  26. [26]
    J. Adamowski, M. Sobkovize, B. Szafran and S. Bednarek, Phys. Rev. B 62, 4234 (2000).ADSCrossRefGoogle Scholar
  27. [27]
    X. Wen-Fang, Chinese Phys. Lett. 22, 1768 (2005).ADSCrossRefGoogle Scholar
  28. [28]
    M. A. Semina, A. A. Golovatenko and A. V. Rodina, Phys. Rev. B 93, 045409 (2016).ADSCrossRefGoogle Scholar
  29. [29]
    A. Gharaati and R. Khordad, Superlattice and Microst. 48, 276 (2010).ADSCrossRefGoogle Scholar
  30. [30]
    L. Lu, W. Xie and H. Hassanabadi, Physica B 406, 4129 (2011).ADSCrossRefGoogle Scholar
  31. [31]
    R. Pino, A. Markvoort and P. A. J. Hilberts, Physica B 325, 149 (2011).ADSCrossRefGoogle Scholar
  32. [32]
    R. Pino, A. Markvoort and P. A. J. Hilberts, Eur. Phys. J. B 23, 103 (2001).ADSCrossRefGoogle Scholar
  33. [33]
    A. Sergeev, R. Jovanovic, S. Kais and F. H Alharbi, J. Phys. A: Math. Theor. 49, 285202 (2016).CrossRefGoogle Scholar
  34. [34]
    E. H. Lieb, Rev. Mod. Phys. 53, 603 (1981).ADSCrossRefGoogle Scholar
  35. [35]
    E. Cappelluti and L. D. Site, Physica A 303, 481 (2002).ADSCrossRefGoogle Scholar
  36. [36]
    I. Porras, J. Math. Chem. 46, 795 (2009).MathSciNetCrossRefGoogle Scholar
  37. [37]
    D. Ninno, F. Trani, G. Cantele, K. J. Hameeuw, G. Iadonisi, E. Degoli and S. Ossicini, Europhys. Lett. 74, 519 (2006).ADSCrossRefGoogle Scholar
  38. [38]
    R. Pino, Phys. Rev. B 58, 4644 (1998).ADSCrossRefGoogle Scholar
  39. [39]
    E. H. Lieb, J. P. Solovej and J. Yngvason, Phys. Rev. B 51, 646 (2000).Google Scholar
  40. [40]
    S. Sinha, R. Shankar and M. V. Murthy, Phys. Rev. B 62, 896 (2000).CrossRefGoogle Scholar
  41. [41]
    S. Sinha, Physica E 8, 24 (2000).ADSCrossRefGoogle Scholar
  42. [42]
    A. Puente, M. Casas and L. Serra, Physica E 8, 387 (2000).ADSCrossRefGoogle Scholar
  43. [43]
    S. J. Puglia, A. Bhattacharrya and R. J. Furnstahl, Nucl. Phys. A 723, 145 (2003).ADSCrossRefGoogle Scholar
  44. [44]
    P. Vignolo and A. Minguzzi and M. P. Tosi, Phys. Rev. Lett. 85, 2850 (2000).ADSCrossRefGoogle Scholar
  45. [45]
    G. M. Bruun and K. Burnett, Phys. Rev. A 58, 2427 (1998).ADSCrossRefGoogle Scholar
  46. [46]
    R. K. Bhaduri, M. V. N. Murthy and M. K. Srivastava, Phys. Rev. Lett. 76, 165 (1996).ADSCrossRefGoogle Scholar
  47. [47]
    H. Yoshimoto and S. Kurihara, J. Phys. A 36, 10461 (2003).ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    S. Alfarisa, W. S. B. Dwandaru and D. Darmawan, Makara J. Sci. 20, 28 (2016).CrossRefGoogle Scholar
  49. [49]
    M. Ögren and H. Heiselberg, Phys. Rev. A 76, 021601(R) (2007).ADSCrossRefGoogle Scholar
  50. [50]
    G. Su, J. Chen and L. Chen, Phys. Lett. A 315, 109 (2003).ADSCrossRefGoogle Scholar
  51. [51]
    B. Gülveren, Int. J. Mod. Phys. B 26, 1250152 (2012).CrossRefGoogle Scholar
  52. [52]
    B. Gülveren, Int. J. Mod. Phys. B 26, 1250029–1 (2012).CrossRefGoogle Scholar
  53. [53]
    J. S. Blakemore, Solid-State Electron 25, 1067 (1982).ADSCrossRefGoogle Scholar
  54. [54]
    R. K. Pathria, Statistical Mechanics (Pergamon, New York, 1977).zbMATHGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceSelçuk UniversityKonyaTurkey

Personalised recommendations