Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 10, pp 1596–1602 | Cite as

Quantum Entanglement of Dark Matter

  • Jae-Weon Lee
Article
  • 9 Downloads

Abstract

We suggest that the dark matter in the universe has quantum entanglement if the dark matter is a Bose-Einstein condensation of ultra-light scalar particles. In this theory, any two regions of a galaxy are quantum entangled due to the quantum nature of the condensate. We calculate the entanglement entropy of a typical galactic halo, which turns out to be at least O(ln(M/m)), where M is the mass of the halo and m is the mass of a dark matter particle. The entanglement can be inferred from the rotation curves of the galaxy or the interference patterns of the dark matter density.

Keywords

Dark matter BEC Entanglement Galactic halos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. H. Press, B. S. Ryden and D. N. Spergel, Phys. Rev. Lett. 64, 1084 (1990).ADSCrossRefGoogle Scholar
  2. [2]
    P. Salucci, F. Walter and A. Borriello, Astronomy and Astrophysics 409, 53 (2003).ADSCrossRefGoogle Scholar
  3. [3]
    J. F. Navarro, C. S. Frenk and S. D. M. White, Astrophys. J. 462, 563 (1996).ADSCrossRefGoogle Scholar
  4. [4]
    W. J. G. de Blok, A. Bosma and S. S. McGaugh, astroph/0212102 (2002).Google Scholar
  5. [5]
    A. Tasitsiomi, International Journal of Modern Physics D 12, 1157 (2003).ADSCrossRefGoogle Scholar
  6. [6]
    S-J. Sin, Phys. Rev. D50, 3650 (1994).ADSGoogle Scholar
  7. [7]
    J-W. Lee and I-G. Koh, Phys. Rev. D53, 2236 (1996).ADSGoogle Scholar
  8. [8]
    W. Hu, R. Barkana and A. Gruzinov, Phys. Rev. Lett. 85, 1158 (2000).ADSCrossRefGoogle Scholar
  9. [9]
    H-Y. Schive, T. Chiueh and T. Broadhurst, Nature Physics 10, 496 (2014).ADSCrossRefGoogle Scholar
  10. [10]
    H-Y. Schive et al., Phys. Rev. Lett. 113, 261302 (2014).ADSCrossRefGoogle Scholar
  11. [11]
    J-W. Lee, J. Korean Phys. Soc. 54, 2622 (2009).ADSCrossRefGoogle Scholar
  12. [12]
    A. Suárez, V. H. Robles and T. Matos, Astrophysics and Space Science Proceedings 38, 107 (2014).ADSCrossRefGoogle Scholar
  13. [13]
    T. Rindler-Daller and P. R. Shapiro, Modern Physics Letters A 29, 30002 (2014).ADSCrossRefGoogle Scholar
  14. [14]
    T. Harko, Phys. Rev. D 89, 084040 (2014).ADSCrossRefGoogle Scholar
  15. [15]
    P-H. Chavanis, Phys. Rev. D 84, 043531 (2011).ADSCrossRefGoogle Scholar
  16. [16]
    K. Huang, C. Xiong and X. Zhao, International Journal of Modern Physics A 29, 50074 (2014).ADSGoogle Scholar
  17. [17]
    M. R. Baldeschi, G. B. Gelmini and R. Ruffini, Physics Letters B 122, 221 (1983).ADSCrossRefGoogle Scholar
  18. [18]
    M. Membrado, A. F. Pacheco and J. Sañudo, Phys. Rev. A 39, 4207 (1989).ADSCrossRefGoogle Scholar
  19. [19]
    L. M. Widrow and N. Kaiser, Astrophys. J. Lett. 416, L71 (1993).ADSCrossRefGoogle Scholar
  20. [20]
    F. E. Schunck, astro-ph/9802258 (1998).Google Scholar
  21. [21]
    U. Nucamendi, M. Salgado and D. Sudarsky, Phys. Rev. Lett. 84, 3037 (2000).ADSCrossRefGoogle Scholar
  22. [22]
    A. Arbey, J. Lesgourgues and P. Salati, Phys. Rev. D 64, 123528 (2001).ADSCrossRefGoogle Scholar
  23. [23]
    A. Arbey, J. Lesgourgues and P. Salati, Phys. Rev. D 65, 083514 (2002).ADSCrossRefGoogle Scholar
  24. [24]
    J. Goodman, New Astronomy Reviews 5, 103 (2000).CrossRefGoogle Scholar
  25. [25]
    P. Peebles, Astrophys. J. 534, L127 (2000).ADSCrossRefGoogle Scholar
  26. [26]
    E. W. Mielke and F. E. Schunck, Phys. Rev. D 66, 023503 (2002).ADSCrossRefGoogle Scholar
  27. [27]
    V. Sahni and L. Wang, Phys. Rev. D 62, 103517 (2000).ADSCrossRefGoogle Scholar
  28. [28]
    M. Alcubierre et al., Class. Quant. Grav. 19, 5017 (2002).ADSCrossRefGoogle Scholar
  29. [29]
    C-G. Park, J-C. Hwang and H. Noh, Phys. Rev. D 86, 083535 (2012).ADSCrossRefGoogle Scholar
  30. [30]
    P. Sikivie and Q. Yang, Phys. Rev. Lett. 103, 111301 (2009).ADSCrossRefGoogle Scholar
  31. [31]
    B. Fuchs and E. W. Mielke, Mon. Not. Roy. Astron. Soc. 350, 707 (2004).ADSCrossRefGoogle Scholar
  32. [32]
    T. Matos, F. S. Guzman, L. A. Urena-Lopez and D. Nunez, astro-ph/0102419 (2001).Google Scholar
  33. [33]
    M. P. Silverman and R. L. Mallett, Classical and Quantum Gravity 18, L103 (2001).ADSCrossRefGoogle Scholar
  34. [34]
    U. Nucamendi, M. Salgado and D. Sudarsky, Phys. Rev. D 63, 125016 (2001).ADSCrossRefGoogle Scholar
  35. [35]
    A. A. Julien Lesgourgues and P. Salati, New Astronomy Reviews 46, 791 (2002).ADSCrossRefGoogle Scholar
  36. [36]
    C. G. Boehmer and T. Harko, JCAP 0706, 025 (2007).ADSCrossRefGoogle Scholar
  37. [37]
    F. S. Guzman and T. Matos, Class. Quant. Grav. 17, L9 (2000).ADSCrossRefGoogle Scholar
  38. [38]
    J. P. Mbelek, Astron. Astrophys. 424, 761 (2004).ADSCrossRefGoogle Scholar
  39. [39]
    T. H. Lee and B. J. Lee, Phys. Rev. D 69, 127502 (2004).ADSMathSciNetCrossRefGoogle Scholar
  40. [40]
    F. S. Guzman and F. D. Lora-Clavijo, Gen. Rel. Grav. 47, 21 (2015).ADSCrossRefGoogle Scholar
  41. [41]
    L. Hui, J. P. Ostriker, S. Tremaine and E. Witten, arXiv:1610.08297 (2016).Google Scholar
  42. [42]
    J-W. Lee, Phys. Lett. B681, 118 (2009).ADSCrossRefGoogle Scholar
  43. [43]
    J-W. Lee, Phys. Lett. B756, 166 (2016).ADSCrossRefGoogle Scholar
  44. [44]
    H. L. Bray, arXiv1004.4016 (2010).Google Scholar
  45. [45]
    F. S. Guzman, F. D. Lora-Clavijo, J. J. Gonzalez-Aviles and F. J. Rivera-Paleo, JCAP 1309, 034 (2013).ADSCrossRefGoogle Scholar
  46. [46]
    M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2001).zbMATHGoogle Scholar
  47. [47]
    J-W. Lee, J. Lee and H-C. Kim, JCAP 0708, 005 (2007).ADSCrossRefGoogle Scholar
  48. [48]
    J-W. Lee, H-C. Kim and J. Lee, J. Korean Phys. Soc. 66, 1025 (2015).ADSCrossRefGoogle Scholar
  49. [49]
    M. Van Raamsdonk, Gen. Rel. Grav. 42, 2323 (2010), [Int. J. Mod. Phys.D19,2429(2010)].ADSCrossRefGoogle Scholar
  50. [50]
    E. Martin-Martinez and N. C. Menicucci, Class. Quant. Grav. 29, 224003 (2012).ADSCrossRefGoogle Scholar
  51. [51]
    Y. Nambu, Phys. Rev. D78, 044023 (2008).ADSGoogle Scholar
  52. [52]
    C. Simon, Phys. Rev. A 66, 052323 (2002).ADSCrossRefGoogle Scholar
  53. [53]
    W. Ding and K. Yang, Phys. Rev. A 80, 012329 (2009).ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    G. Tóth, C. Simon and J. I. Cirac, Phys. Rev. A 68, 062310 (2003).ADSCrossRefGoogle Scholar
  55. [55]
    A. X. Gonzalez-Morales, A. Diez-Tejedor, L. A. Urena-Lopez and O. Valenzuela, Phys. Rev. D87, 021301 (2013).ADSGoogle Scholar
  56. [56]
    A. Khmelnitsky and V. Rubakov, JCAP 1402, 019 (2014).ADSCrossRefGoogle Scholar
  57. [57]
    A. Aoki and J. Soda, Phys. Rev. D93, 083503 (2016).ADSGoogle Scholar
  58. [58]
    A. Aoki and J. Soda, arXiv:1608.05933 (2016).Google Scholar
  59. [59]
    J. A. Gonzalez and F. S. Guzman, Phys. Rev. d83, 103513 (2011).ADSGoogle Scholar
  60. [60]
    A. Imambekov, V. Gritsev and E. Demler, eprint arXiv:cond-mat/0703766 (2007).Google Scholar
  61. [61]
    A. Paredes and H. Michinel, Phys. Dark Univ. 12, 50 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of Renewable RnergyJungwon UniversityGoesanKorea
  2. 2.Department of PhysicsNorth Carolina State UniversityRaleighUSA

Personalised recommendations