Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 10, pp 1546–1549 | Cite as

In-situ XPS Study of Core-levels of ZnO Thin Films at the Interface with Graphene/Cu

  • Jinsung Choi
  • Ranju JungEmail author
Article
  • 31 Downloads

Abstract

We have investigated core-levels of ZnO thin films at the interface with the graphene on Cu foil using in-situ X-ray Photoelectron Spectroscopy (XPS). Spectral evolution of C 1s, Zn 2p, and O 1s are observed in real time during RF sputtering deposition. We found binding energy (BE) shifts of Zn 2p and ‘Zn−O’ state of O 1s depending on ZnO film thickness. Core-levels BE shifts of ZnO will be discussed on the basis of electron transfer at the interface and it may have an important role in the electronic transport property of the ZnO/graphene-based electronic device.

Keywords

Graphene ZnO In-situ XPS Interface Thin film Electron transfer Dipole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Z. Li, R. Yang, M. Yu, F. Bai, C. Li and Z. L. Wang, J. Phys. Chem. C 112, 20114 (2008).CrossRefGoogle Scholar
  2. [2]
    B. Li and H. Cao, J. Mater. Chem. 21, 3346 (2010).CrossRefGoogle Scholar
  3. [3]
    Y. Y. Hui, G. Tai, Z. Sun, Z. Xu, N. Wang, F. Yan and S. P. Lau, Nanoscale 4, 3118 (2012).ADSCrossRefGoogle Scholar
  4. [4]
    J. O. Hwang, J. S. Park, D. S. Choi, J. Y. Kim, S. H. Lee, K. E. Lee, Y-H. Kim, M. H. Song, S. Yoo and S. O. Kim, ACS Nano 6, 159 (2012).CrossRefGoogle Scholar
  5. [5]
    M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nat. Mater. 4, 42 (2005).CrossRefGoogle Scholar
  6. [6]
    K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, J. Am. Chem. Soc. 127, 8286 (2005).CrossRefGoogle Scholar
  7. [7]
    S-J. Chang, I-C. Chen and B-R. Huang, Nanotechnology 19, 175502 (2008).ADSCrossRefGoogle Scholar
  8. [8]
    F.M. Simanjuntak, D. Panda, K-H. Wei and T-Y. Tseng, Nanoscale Research Letters 11, 368 (2016).ADSCrossRefGoogle Scholar
  9. [9]
    J. O. Hwang, J. S. Park, D. S. Choi, J. Y. Kim, S. H. Lee, K. E. Lee, Y-H. Kim, M. H. Song, S. Yoo and S. O. Kim, ACS Nano 6, 159 (2012).CrossRefGoogle Scholar
  10. [10]
    J. S. Park, J. M. Lee, S. K. Hwang, S. H. Lee, H-J. Lee, B. R. Lee, H. I. Park, J-S. Kim, S. Yoo, M. H. Song and S. O. Kim, J. Mater. Chem. 22, 12695 (2012).CrossRefGoogle Scholar
  11. [11]
    A. Guermoune, T. Chari, F. Popescu, S. Sabri, J. Guillemette, H. Skulason, T. Szkopek and M. Siaj, Carbon 49, 4204 (2011).CrossRefGoogle Scholar
  12. [12]
    A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Picsanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).ADSCrossRefGoogle Scholar
  13. [13]
    D. Yoon, H. Moon, H. Cheong, J. S. Choi, J. A. Choi and B. H. Park, J. Korean Phys. Soc. 55, 1299 (2009).ADSCrossRefGoogle Scholar
  14. [14]
    W. Geng, X. Zhao, H. Liu and X. Yao, J. Phys. Chem. C 117, 10536 (2013).CrossRefGoogle Scholar
  15. [15]
    C-H. Min, S. Cho, S-H. Lee, D-Y. Cho, W. G. Park, J. G. Chung, E. Lee, J. C. Lee, B. Anass, J. H. Lee, C. S. Hwang and S-J. Oh, Appl. Phys. Lett. 96, 201907 (2010).ADSCrossRefGoogle Scholar
  16. [16]
    C. N. Peter, W. W. Anku, S. K. Shukla and P. P. Govender, Theoretical Chem. Accounts 137, 75 (2018).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of Electrical and Biological PhysicsKwangwoon UniversitySeoulKorea

Personalised recommendations