Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 10, pp 1437–1443 | Cite as

Low Cost Alcoholic Breath Sensor Based on SnO2 Modified with CNTs and Graphene

  • M. MorsyEmail author
  • I. S. Yahia
  • H. Y. Zahran
  • M. Ibrahim
Article
  • 34 Downloads

Abstract

In this work, SnO2 modified with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) separately and combined sensitized by using the co-precipitation method and their sensing behavior toward ethanol vapor at room temperature were investigated. An interdigitated electrode (IDE) gold substrate is very expensive compared to a fluorine doped tin oxide (FTO) substrate; hence, we used the latter to reduce the fabrication cost. The structure and the morphology of the studied materials were characterized by using differential thermal analyses (DTA) and thermogravimetric analysis (TGA), transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Brunauer-Emmett-Teller surface area and Barrett-Joyner-Halenda (BJH) pore size measurements. The studied composites were subjected to ethanol in its gas phase at concentrations from 10 to 200 ppm. The present composites showed high-performance sensitivity for many reasons: the incorporation of SnO2 and CNTs which prevents the agglomeration of rGO sheets, the formation of a 3D mesopourus structure and an increase in the surface area. The decoration with rGO and CNTs led to more active sites, such as vacancies, which increased the adsorption of ethanol gas. In addition, the mesopore structure and the nano size of the SnO2 particles allowed an efficient diffusion of gases to the active sites. Based on these results, the present composites should be considered as efficient and low-cost sensors for alcohol.

Keywords

Gas sensor Ethanol Carbon nano-materials FTIR Thermal analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Benchirouf, C. Müller and O. Kanoun, Nanoscale Res. Lett. 11, 1 (2016).ADSCrossRefGoogle Scholar
  2. [2]
    H. W. Cheong and M. J. Lee, J. Ceram. Process. Res. 7, 183 (2006).Google Scholar
  3. [3]
    D. Zhang, J. Liu, H. Chang, A. Liu and B. Xia, RSC Adv. 5, 18666 (2015).CrossRefGoogle Scholar
  4. [4]
    S. Nagirnyak and T. Dontsova, Nano Res. Appl. 3, 1 (2017).CrossRefGoogle Scholar
  5. [5]
    S. Leonardi, Chemosensors 5, 17 (2017).CrossRefGoogle Scholar
  6. [6]
    Z. Wang, H. Shang, R. Zhao, X. Xing and Y. Wang, J. Nanostruct. 7, 103 (2017).ADSGoogle Scholar
  7. [7]
    F. Wang, H. Li, Z. Yuan, Y. Sun, F. Chang, H. Deng, L. Xiea and H. Lic, RSC Adv. 6, 79343 (2016).CrossRefGoogle Scholar
  8. [8]
    M. Guziewicz, P. Klataa, J. Grochowski, K. Golaszewska, E. Kaminskaa, J. Z. Domagala, B. A. Witkowskib, M. Kandylac, Ch. Chatzimanolisd, M. Kompitsas and A. Piotrowska, Procedia Eng. 47, 746 (2012).CrossRefGoogle Scholar
  9. [9]
    Y. Xiao, Q. Yang, Z. Wang, R. Zhang, Y. Gao, P. Sun, Y. Sun and G. Lu, Sens. Actuators B Chem. 227, 419 (2016).CrossRefGoogle Scholar
  10. [10]
    M. Arvani, H. M. Aliha, A. A. Khodadadi and Y. Mortazavi, Sci. Iran. C 24, 3033 (2017).Google Scholar
  11. [11]
    H. Gao, L. Zhao, L. Wang, P. Sun, H. Lu, F. Liu, X. Chuai and G. Lu, Sens. Actuators B Chem. 255, 3505 (2018).CrossRefGoogle Scholar
  12. [12]
    X. Li, Y. Chang and Y. Long, Mater. Sci. Eng. C 32, 817 (2012).CrossRefGoogle Scholar
  13. [13]
    C. Marichy, P. A. Russo, M. Latino, J. P. Tessonnier, M. G. Willinger, N. Donato, G. Neri and N. Pinna, J. Phys. Chem. C 117, 19729 (2013).Google Scholar
  14. [14]
    P. A. Russo, N. Donato, S. G. Leonardi, Baek, D. E Conte, G. Neri and N. Pinna, Angew. Chemie - Int. Ed. 51, 11053 (2012).CrossRefGoogle Scholar
  15. [15]
    S. A. El-Khodary, G. M. El-Enany, M. El-Okr and M. Ibrahim, Synth Met. 233, 41 (2017).CrossRefGoogle Scholar
  16. [16]
    C. A. Zito, T. M. Perfecto and D. P. Volanti, Sens. Actuators B Chem. 244, 466 (2017).CrossRefGoogle Scholar
  17. [17]
    H. Elhaes, A. Fakhry and M. Ibrahim, Materials Today: Proceedings, 3, 2483 (2016).CrossRefGoogle Scholar
  18. [18]
    S. S. Varghese, S. H. Varghese, S. Swaminathan, K. K. Singh and V. Mittal 4, 651 (2015).Google Scholar
  19. [19]
    B. Yuliarto, G. Gumilar and N. L. W. Septiani, Adv. Mater. Sci. Eng 2015, 1 (2015).CrossRefGoogle Scholar
  20. [20]
    Y. Wei, G. Yi, Y. Xu, L. Zhou, X. Wang, J. Cao, G. Sun, Z. Chen, B. Hari and Z. Zhang, J. Mater. Sci. Mater. Electron 28, 17049 (2017).CrossRefGoogle Scholar
  21. [21]
    A. Yang, X. Tao, R. Wang, S. Lee and C. Surya, Appl. Phys. Lett. 91, 133110 (2007).ADSCrossRefGoogle Scholar
  22. [22]
    D. Zhang, A. Liu, H. Chang and B. Xia, RSC Adv. 5, 3016 (2015).CrossRefGoogle Scholar
  23. [23]
    S. A. El-Khodary, G. M. El-Enany, M. El-Okr and M. Ibrahim, Electrochim. Acta 150, 269 (2014).CrossRefGoogle Scholar
  24. [24]
    M. Morsy, M. Helal, M. El-Okr, and M. Ibrahim, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 132, 594 (2014).ADSCrossRefGoogle Scholar
  25. [25]
    X. Yu, Q. Wu, H. Zhang, G. Zeng, W. Li, Y. Qian, Y. Li, G. Yang and M. Chen, Materials (Basel) 11, 1 (2017).CrossRefGoogle Scholar
  26. [26]
    S. K. Sami, J. Y. Seo, S-E. Hyeon, M. S. A. Shershah, P-J. Yoo and C. H. Chung, RSC Adv. 8, 4182 (2018).CrossRefGoogle Scholar
  27. [27]
    H. Du, P. J. Yao, Y. Sun, J. Wang, H. Wang and N. Yu, Sens. 17, 1822 (2017).CrossRefGoogle Scholar
  28. [28]
    M. Morsy, M. Helal, M. El-Okr and M. Ibrahim, Der Pharma Chem. 7, 139 (2015).Google Scholar
  29. [29]
    G. Yi, B. Xing, H. Zeng, X. Wang, C. Zhang, J. Cao and L. Chen, J. Nanomaterials 2017, 1 (2017).CrossRefGoogle Scholar
  30. [30]
    G. Korotcenkov, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 139, 1 (2007).CrossRefGoogle Scholar
  31. [31]
    S. Xu, F. Sun, S. Yang, Z. Pan, J. Long and F. Gu, Sci. Rep. 5, 1 (2015).Google Scholar
  32. [32]
    T. Wang, D. Huang, Z. Yang, S. Xu, G. He, X. Li, N. Hu, G. Yin, D. He and L. Zhang, Nano-Micro Lett. 8, 95 (2016).CrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  • M. Morsy
    • 1
    Email author
  • I. S. Yahia
    • 2
    • 3
  • H. Y. Zahran
    • 2
    • 3
  • M. Ibrahim
    • 4
  1. 1.Building Physics and Environment InstituteHousing & Building National Research Center (HBRC)CairoEgypt
  2. 2.Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Physics Department, Faculty of ScienceKing Khalid UniversityAbhaSaudi Arabia
  3. 3.Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Laboratory, Metallurgical Laboratory 2 Physics Department, Faculty of EducationAin Shams UniversityCairoEgypt
  4. 4.Spectroscopy DepartmentNational Research CentreCairoEgypt

Personalised recommendations