Advertisement

Journal of the Korean Physical Society

, Volume 73, Issue 1, pp 125–129 | Cite as

Cube-Shaped Cetyltrimethyl Ammonium Bromide-Coated Nickel Ferrite Nanoparticles for Hyperthermia Applications

Article
  • 2 Downloads

Abstract

Cetyltrimethyl ammonium bromide (CTAB)-coated nickel ferrite (NiFe2O4) nanoparticles were synthesized using the high-temperature thermal decomposition method. The hydrophobic particles became water-soluble after the coating with CTAB, a positively charged ligand. The morphology and the phases of the nanoparticles were characterized using X-ray diffraction and transmission electron microscopy (TEM). TEM images demonstrated that the particles were cube-shaped; the average length of their side was 32.6 nm. Inductively coupled plasma spectroscopy measurements were performed to confirm the chemical composition of the particles. The particles exhibited superparamagnetic behavior with negligible coercive force. Magnetic heating of the aqueous suspensions of nanoparticles was performed in the presence of a radio-frequency magnetic field of 4.4 kA/m at a frequency of 216 kHz. The 1.5-mg/mL sample reached the hyperthermia target temperature of 42 °C and exhibited a high specific absorption rate (SAR) value of 152 W/g. These findings show that the investigated nanoparticles are suitable for magnetic hyperthermia applications and have the advantage of low dosage owing to their high SAR values.

Keywords

Cetyltrimethyl ammonium bromide-coated nickel ferrite nanoparticle Cube-shaped particles High specific absorption rate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Q. A. Pankhurst, J. Connolly, S. K. Jones and J. Dobson, J. Phys. D: Appl. Phys. 36, R167 (2003).ADSCrossRefGoogle Scholar
  2. [2]
    A. Ahmad, H. Bae, I. Rhee and S. Hong, J. Magn. Magn. Mater. 447, 42 (2018).ADSCrossRefGoogle Scholar
  3. [3]
    I. Rhee, New Physics: Sae Mulli 65, 411 (2015).Google Scholar
  4. [4]
    T. Ahmad, H. Bae, Y. Iqbal, I. Rhee, S. Hong, J. Lee, Y. Chang and D. Sohn, J. Magn. Magn. Mater. 381, 151 (2015).ADSCrossRefGoogle Scholar
  5. [5]
    P. Mehrotra, J. Oral Biol. Craniofac. Res. 6, 153 (2016).CrossRefGoogle Scholar
  6. [6]
    J. Lee, M. Morita, K. Takemura and Y. Park, Biosens. Bioelectron. 102, 425 (2018).CrossRefGoogle Scholar
  7. [7]
    W. H. De Jong and P. J. A. Borm, Int. J. Nanomedicine 3, 133 (2008).CrossRefGoogle Scholar
  8. [8]
    A. Z. Wilczewska, K. Niemirowicz, K. H. Markiewicz and H. Car, Pharmacol. Rep. 64, 1020 (2012).CrossRefGoogle Scholar
  9. [9]
    R. Hergt, R. Hiergeist, I. Hilger, W. A. Kaiser, Y. Lapatnikov, S. Margel and U. Richter, J. Magn. Magn. Mater. 270, 345 (2004).ADSCrossRefGoogle Scholar
  10. [10]
    R. Hergt, S. Dutz and M. Röder, J. Phy. Conden. Matter 20, 385214 (2008).ADSCrossRefGoogle Scholar
  11. [11]
    Y. Iqbal, H. Bae, I. Rhee and S. Hong, J. Korean Phys. Soc. 68, 587 (2016).ADSCrossRefGoogle Scholar
  12. [12]
    F. Shubitidze, K. Kekalo, R. Stigliano and I. Baker, J. Appl. Phys. 117, 094302 (2015).ADSCrossRefGoogle Scholar
  13. [13]
    T. Sato, T. Iijima, M. Seki and N. Inagaki, J. Magn. Magn. Mater. 65, 252 (1987).ADSCrossRefGoogle Scholar
  14. [14]
    J. Jacob and M. A. Khadar, J. Appl. Phys. 107, 11 (2010).CrossRefGoogle Scholar
  15. [15]
    R. J. Brook and W. D. Kingery, J. Appl. Phys. 38, 3589 (1967).ADSCrossRefGoogle Scholar
  16. [16]
    H. Shao, H. Lee, Y. Huang, I. Ko and C. Kim, IEEE Trans. Magn. 41, 3388 (2005).ADSCrossRefGoogle Scholar
  17. [17]
    Z-X. Tang, D. Claveau, R. Corcuff, K. Belkacemi and J. Arul, Mater. Lett. 62, 2096 (2008).CrossRefGoogle Scholar
  18. [18]
    H-F. Zhang and Y-P. Shi, Curr. Anal. Chem. 8, 150 (2012).CrossRefGoogle Scholar
  19. [19]
    M. Menelaou, K. Georgoula, K. Simeonidis and C. Dendrinou-Samara, Dalton Trans. 43, 3626 (2014).CrossRefGoogle Scholar
  20. [20]
    P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy and C. Muthamizhchelvan, Mater. Res. Bull. 46, 2204 (2011).CrossRefGoogle Scholar
  21. [21]
    K. Maaz, S. Karim, A. Mumtaz, S. K. Hasanain, J. Liu and J. L. Duan, J. Magn. Magn. Mater. 321, 1838 (2009).ADSCrossRefGoogle Scholar
  22. [22]
    M. Ma, Y. Wu, J. Zhou, Y. Sun, Y. Zhang and N. Gu, J. Magn. Magn. Mater. 268, 33 (2004).ADSCrossRefGoogle Scholar
  23. [23]
    Y. Iqbal, H. Bae, I. Rhee and S. Hong, J. Magn. Magn. Mater. 409, 80 (2016).ADSCrossRefGoogle Scholar
  24. [24]
    A. E. Deatsch and B. A. Evans, J. Magn. Magn. Mater. 354, 163 (2014).ADSCrossRefGoogle Scholar
  25. [25]
    J. Dormann, L. Bessais and D. Fiorani, J. Phys. C: Solid State Phys. 21, 2015 (1988).ADSCrossRefGoogle Scholar

Copyright information

© The Korean Physical Society 2018

Authors and Affiliations

  1. 1.Department of PhysicsKyungpook National UniversityDaeguKorea

Personalised recommendations